Have a personal or library account? Click to login
3D Face Factorisation for Face Recognition Using Pattern Recognition Algorithms Cover

3D Face Factorisation for Face Recognition Using Pattern Recognition Algorithms

Open Access
|Jun 2019

References

  1. 1. Dantcheva, A., P. Elia, A. Ross. What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics. – IEEE Transactions on Information Forensics and Security, Vol. 11, 2016, No 3, pp. 441-467.10.1109/TIFS.2015.2480381
  2. 2. Nassih, B., M. Ngadi, A. Amine, A. El-Attar. New Proposed Fusion between DCT for Feature Extraction and NSVC for Face Classification. – Cybernetics and Information Technologies, Vol. 18, 2018, No 2, pp. 89-97.10.2478/cait-2018-0030
  3. 3. Thompson, P. Margaret Thatcher: A New Illusion. Perception, 1980.10.1068/p0904836999452
  4. 4. Klingenberg, C. P. Morphometric Integration and Modularity in Configurations of Land-Marks: Tools for Evaluating a Priori Hypotheses. – Evolution & Development, Vol. 11, 2009, No 4, pp. 405-421.10.1111/j.1525-142X.2009.00347.x277693019601974
  5. 5. Xu, C., Y. Wang, T. Tan, et al. Automatic 3d Face Recognition Combining Global Geometric Features with Local Shape Variation Information. – In: Proc. of 6th IEEE International Conference on Automatic Face and Gesture Recognition, 2004. IEEE, 2004, pp. 308-313.
  6. 6. Benedikt, L., D. Cosker, P. L. Rosin, et al. Assessing the Uniqueness and Permanence of Facial Actions for Use in Biometric Applications. – IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, Vol. 40, 2010, No 3, pp. 44-460.10.1109/TSMCA.2010.2041656
  7. 7. Blanz, V., T. Vetter. A Morphable Model for the Synthesis of 3d Faces. – In: Proc. of 26th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., 1999, pp. 187-194.10.1145/311535.311556
  8. 8. Heseltine, T., N. Pears, J. Austin. Three-Dimensional Face Recognition: An Eigen Surface Approach. – In: 2004 International Conference on Image Processing ICIP’04, 2004, Vol. 2, IEEE, 2004, pp. 1421-1424.10.5244/C.18.55
  9. 9. Al-Osaimi, F., M. Bennamoun, A. Mian. An Expression Deformation Approach to Non-Rigid 3d Face Recognition. – International Journal of Computer Vision, Vol. 81, 2009, No 3, pp. 302-316.10.1007/s11263-008-0174-0
  10. 10. Kakadiaris, I.A., G. Passalis, G. Toderici, et al. Three-Dimensional Face Recognition in the Presence of Facial Expressions: An Annotated Deformable Model Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, 2007, No 4, pp. 640-649.10.1109/TPAMI.2007.101717299221
  11. 11. Zhou, S., S. Xiao. 3d Face Recognition: A Survey. – Human-Centric Computing and Information Sciences, Vol. 8, 2018, No 1, 35.10.1186/s13673-018-0157-2
  12. 12. Amor, B. B., M. Ardabilian, L. Chen. Enhancing 3d Face Recognition by Mimic’s Segmentation. – In: Proc. of 6th International Conference on Intelligent Systems Design and Applications, Vol. 3, IEEE, 2006, pp. 150-155.10.1109/ISDA.2006.24
  13. 13. Spreeuwers, L. Fast and Accurate 3d Face Recognition. – International Journal of Computer Vision, Vol. 93, 2011, No 3, pp. 389-414.10.1007/s11263-011-0426-2
  14. 14. Chang, K. I., K. W. Bowyer, P. J. Flynn. Multiple Nose Region Matching for 3D Face Recognition under Varying Facial Expression. – IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, 2006, No 10, pp. 1695-1700.10.1109/TPAMI.2006.210
  15. 15. Zhong, C., Z. Sun, T. Tan. Robust 3d Face Recognition Using Learned Visual Codebook. – In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007, pp. 1-6.10.1109/CVPR.2007.383279
  16. 16. Xie, Y. L., P. K. Hopke, P. Paatero. Positive Matrix Factorisation Applied to a Curve Resolution Problem. – Journal of Chemometrics: A Journal of the Chemometrics Society, Vol. 12, 1998, No 6, pp. 357-364.10.1002/(SICI)1099-128X(199811/12)12:6<;357::AID-CEM523>3.0.CO;2-S
  17. 17. Li, X., B. Shen, B. D. Liu, et al. Ranking-Preserving Low-Rank Factorisation for Image Annotation with Missing Labels. – IEEE Transactions on Multimedia, Vol. 20, 2018, No 5, pp. 1169-1178.10.1109/TMM.2017.2761985
  18. 18. Wang, Y., X. Lin, L. Wu, et al. Robust Subspace Clustering for Multi-View Data by Exploiting Correlation Consensus. – IEEE Transactions on Image Processing, Vol. 24, 2015, No 11, pp. 3939-3949.10.1109/TIP.2015.2457339
  19. 19. Samko, O., P. L. Rosin, A. D. Marshall. Robust Automatic Data Decomposition Using a Modified Sparse NMF. – In: International Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications, Springer, 2007, pp. 225-234.10.1007/978-3-540-71457-6_21
  20. 20. Phillips, P. J., P. J. Flynn, T. Scruggs, et al. Overview of the Face Recognition Grand Challenge. – In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR’05, 2005, Vol. 1, IEEE, 2005, pp. 947-954.
  21. 21. Szeptycki, P., M. Ardabilian, L. Chen. A Coarse-to-_ne Curvature Analysis-Based Rotation Invariant 3d Face Landmarking. – In: 3rd International IEEE Conference on Biometrics: Theory, Applications, and Systems, 2009, IEEE, pp. 1-6.10.1109/BTAS.2009.5339052
  22. 22. Hutton, T. J., B. F. Buxton, P. Hammond, et al. Estimating Average Growth Trajectories in Shape-Space Using Kernel Smoothing. – IEEE Transactions on Medical Imaging, Vol. 22, 2003, No 6, pp. 747-753.10.1109/TMI.2003.814784
  23. 23. Gower, J. C. Generalized Procrustes Analysis. – Psychometrika, Vol. 40, 1975, No 1, pp. 33-51.10.1007/BF02291478
  24. 24. Bookstein, F. L. Shape and the Information in Medical Images: A Decade of the Morphometric Synthesis. – Computer Vision and Image Understanding, Vol. 66, 1997, No 2, pp. 97-118.10.1006/cviu.1997.0607
  25. 25. Dudani, S. A. The Distance-Weighted k-Nearest-Neighbor Rule. – IEEE Transactions on Systems, Man, and Cybernetics, 1976, No 4, pp. 325-327.10.1109/TSMC.1976.5408784
  26. 26. Ding, C., X. He, H. D. Simon. On the Equivalence of Nonnegative Matrix Factorisation and Spectral Clustering. – In: Proc. of 2005 SIAM International Conference on Data Mining, SIAM, 2005, pp. 606-610.10.1137/1.9781611972757.70
  27. 27. Lee, D. D., H. S. Seung. Learning the Parts of Objects by Non-Negative Matrix Factorisation. – Nature, Vol. 401, 1999, No 6755, p. 788.10.1038/4456510548103
  28. 28. Shen, B., L. Si. Non-Negative Matrix Factorisation Clustering on Multiple Manifolds. – In: AAAI, 2010, pp. 575-580.10.1609/aaai.v24i1.7664
  29. 29. Turk, M. A., A. P. Pentland. Face Recognition Using Eigenfaces. – In: Proc. of 1991, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 1991, pp. 586-591.
  30. 30. Kotsiantis, S. B., I. Zaharakis, P. Pintelas. Supervised Machine Learning: A Review of Classification Techniques. – Emerging Artificial Intelligence Applications in Computer Engineering, Vol. 160, 2007, pp. 3-24.10.1007/s10462-007-9052-3
  31. 31. Arlot, S., A. Celisse, et al. A Survey of Cross-Validation Procedures for Model Selection. – Statistics Surveys, Vol. 4, 2010, pp. 40-79.10.1214/09-SS054
  32. 32. Lei, Y., M. Bennamoun, A. A. El-Sallam. An Efficient 3D Face Recognition Approach Based on the Fusion of Novel Local Low-Level Features. – Pattern Recognition, Vol. 46, 2013, No 1, pp. 24-37.10.1016/j.patcog.2012.06.023
  33. 33. Faltemier, T. C., K. W. Bowyer, P. J. Flynn. A Region Ensemble for 3D Face Recognition. – IEEE Transactions on Information Forensics and Security, Vol. 3, 2008, No 1, pp. 62-73.10.1109/TIFS.2007.916287
  34. 34. Cook, J. A., V. Chandran, C. B. Fookes. 3D Face Recognition Using Log-Gabor Templates. 2006.10.5244/C.20.79
DOI: https://doi.org/10.2478/cait-2019-0013 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 28 - 37
Submitted on: Mar 10, 2019
Accepted on: Apr 19, 2019
Published on: Jun 18, 2019
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Hawraa H. Abbas, Bilal Z. Ahmed, Ahmed Kamil Abbas, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.