Have a personal or library account? Click to login
Security of Low Computing Power Devices: A Survey of Requirements, Challenges & Possible Solutions Cover

Security of Low Computing Power Devices: A Survey of Requirements, Challenges & Possible Solutions

Open Access
|Mar 2019

References

  1. 1. Mukhopadhyay, S. C., N. K. Suryadevara. Internet of Things: Challenges and Opportunities. – In: S. C. Mukhopadhyay, Ed. Smart Sensors. Measurement and Instrumentation. Vol. 9. Switzerland, Springer, 2014, pp. 1-17.10.1007/978-3-319-04223-7
  2. 2. Kateeb, A. E., A. Ramesh, L. Azzawi. Wireless Sensor Nodes Processor Architecture and Design. – In: Proc. of International Conference on Advanced Information Networking and Applications (AINA’08) – Workshops, Okinawa, 2008, pp. 892-897.10.1109/WAINA.2008.177
  3. 3. Khattab, A., Z. Jeddi, E. Amini, M. Bayoumi. Introduction to RFID. – In: Md. Ismail, Md. Sawan, Eds. RFID Security. Analog Circuits and Signal Processing. Springer, AG, 2017, pp. 3-26.10.1007/978-3-319-47545-5_1
  4. 4. Mohammed, L. A., A. R. Ramli, V. Prakash, M. B. Daud. Smart Card Technology: Past, Present, and Future. – International Journal of the Computer, the Internet and Management, Vol. 12, 2004, No 1, pp. 12-22.
  5. 5. Marin, G. A. Network Security Basics. – IEEE Security & Privacy, Vol. 3, 2005, No 6, pp. 68-72.10.1109/MSP.2005.153
  6. 6. Selmic, R. R., V. V. Phoha, A. Serwadda. Wireless Sensor Networks. Chapter 4 – Security in WSNs. Springer, AG, 2016.10.1007/978-3-319-46769-6
  7. 7. Juneja, D., A. Sharma, A. K. Sharma. Wireless Sensor Network Security Research and Challenges: A Backdrop. – In: A. Mantri, S. Nandi, G. Kumar, S. Kumar, Eds. High Performance Architecture and Grid Computing (HPAGC’2011). Communications in Computer and Information Science. Vol. 169. Berlin, Springer, 2011, pp. 406-416.10.1007/978-3-642-22577-2_55
  8. 8. Panda, M. Security in Wireless Sensor Networks Using Cryptographic Techniques. – American Journal of Engineering Research, Vol. 5, 2014, No 1, pp. 50-56.
  9. 9. Walters, J. P., Z. Liang, W. Shi, V. Chaudhary. Wireless Sensor Network Security: A Survey. – In: Y. Xiao, Ed. Security in Distributed, Grid and Pervasive Computing. CRC Press, 2006, pp. 367-405.10.1201/9780429119347-20
  10. 10. Dener, M. Security Analysis in Wireless Sensor Networks. – International Journal of Distributed Sensor Networks, Vol. 2014, pp. 1-9.10.1155/2014/303501
  11. 11. Lopez, J., R. Roman, C. Alcaraz. Analysis of Security Threats, Requirements, Technologies and Standards in Wireless Sensor Networks. – In: A. Aldini, G. Barthe, R. Gorrieri, Eds. Foundations of Security Analysis and Design V. Lecture Notes in Computer Science. Vol. 5705. Berlin, Springer, 2009, pp. 289-338.10.1007/978-3-642-03829-7_10
  12. 12. Zhang, X., B. King. Modeling RFID Security. – In: D. Feng, D. Lin, M. Yung, Eds. Information Security and Cryptology. CISC. Lecture Notes in Computer Science. Vol. 3822. Berlin, Springer, 2005, pp. 75-90.10.1007/11599548_7
  13. 13. Alghazzawi, D. M. Operational and Security Requirements for RFID System. – Journal of Global Research in Computer Science, Vol. 2, 2011, No 12, pp. 6-11.
  14. 14. Tan, C. C., J. Wu. Security in RFID Networks and Communications. – In: L. Chen, J. Ji, Z. Zhang, Eds. Wireless Network Security. Berlin, Springer, 2013 pp. 247-267.10.1007/978-3-642-36511-9_10
  15. 15. Hwang, M. S., C. H. Wei, C. Y. Lee. Privacy and Security Requirements for RFID Applications. – Journal of Computers, Vol. 20, 2009, No 3, pp 55-61.
  16. 16. Zhang, X., B. King. Security Requirements for RFID Computing Systems. – International Journal of Network Security, Vol. 6, 2008, No 2, pp. 214-226.
  17. 17. Knospe, H., H. Pohl. RFID Security. – Information Security Technical Report, Vol. 9, 2004, No 4, pp. 39-50.10.1016/S1363-4127(05)70039-X
  18. 18. Vedder, K., F. Weickmann. Smart Cards Requirements, Properties and Applications. – In: P. Horster, Ed. Chipkarten. DuD-Fachbeiträge, Vieweg+Teubner Verlag, 1998, pp. 307-331.10.1007/978-3-322-89203-4_1
  19. 19. Ko, H., R. D. Caytiles. A Review of Smart Card Security Issues. – Journal of Security Engineering, Vol. 8, 2011, No 3, pp. 359-370.
  20. 20. Kundarap, A., A. Chhajlani, R. Singla, M. Sawant, M. Dere, P. Mahalle. Security for Contactless Smart Cards Using Cryptography. – In: N. Meghanathan, S. Boumerdassi, N. Chaki, D. Nagamalai, Eds. Recent Trends in Network Security and Applications. CNSA 2010. Communications in Computer and Information Science. Vol. 89. Berlin, Springer, 2010, pp. 558-566.10.1007/978-3-642-14478-3_56
  21. 21. Tunstall, M. Smart Card Security. – In: K. E. Mayes, K. Markantonakis, Eds. Smart Cards, Tokens, Security and Applications. Boston, Springer, 2008, pp. 195-228.10.1007/978-0-387-72198-9_9
  22. 22. Markantonakis, K., K. Mayes, M. Tunstall, D. Sauveron, F. Piper. Smart Card Security. – In: J. Kacprzyk, Ed. Studies in Computational Intelligence (SCI). Vol. 57. Berlin, Springer, 2007, pp. 201-234.10.1007/978-3-540-71078-3_8
  23. 23. Chelli, K. Security Issues in Wireless Sensor Networks: Attacks and Countermeasures. – In: Proc. of World Congress on Engineering, Lecture Notes in Engineering and Computer Science, London, 2015, pp. 519-524.
  24. 24. Ameen, M. A., J. Liu, K. Kwak. Security and Privacy Issues in Wireless Sensor Networks for Healthcare Applications. – Journal of Medical Systems, Vol. 36, 2012, No 1, pp. 93-101.10.1007/s10916-010-9449-4327964520703745
  25. 25. Hari, P. B., S. N. Singh. Security Issues in Wireless Sensor Networks: Current Research and Challenges. – In: Proc. of International Conference on Advances in Computing, Communication, & Automation (ICACCA’16), Dehradun, 2016, pp. 1-6.10.1109/ICACCA.2016.7578876
  26. 26. Teymourzadeh, M., R. Vahed, S. Alibeygi, N. Dastanpor. Security in Wireless Sensor Networks: Issues and Challenges. – International Journal of Computer Networks and Communications Security, Vol. 1, 2013, No 7, pp. 329-334.10.47277/IJCNCS/1(7)7
  27. 27. Hu, F., J. Ziobro, J. Tillett, N. K. Sharma. Secure Wireless Sensor Networks: Problems and Solutions. – Journal of Systemics, Cybernetics and Informatics, Vol. 1, 2003, No 4, pp. 90-100.
  28. 28. Dhakne, A. R., P. N. Chatur. Detailed Survey on Attacks in Wireless Sensor Network. – In: Proc. of International Conference on Data Engineering and Communication Technology, Advances in Intelligent Systems and Computing, Singapore, 2017 pp. 319-331.10.1007/978-981-10-1678-3_31
  29. 29. Pande, S., M. F. Unuakhaluet. Privacy and Security Challenges of RFID. – In: Proc. of Information Systems Educators Conference, Texas, 2013, pp. 1-10.
  30. 30. Kulkarni, G., R. Shelke, R. Sutar, S. Mohite. RFID Security Issues & Challenges. – In: Proc. of International Conference on Electronics and Communication Systems (ICECS’16), Coimbatore, 2014, pp. 1-4.10.1109/ECS.2014.6892730
  31. 31. Guizani, S. Security Applications Challenges of RFID Technology and Possible Countermeasures. – In: Proc. of International Conference on Computing, Management and Telecommunications (ComManTel’14), Da Nang, 2014, pp. 291-297.10.1109/ComManTel.2014.6825620
  32. 32. Kannouf, N., Y. Douzi, M. Benabdellah, A. Azizi. Security on RFID Technology. – In: Proc. of International Conference on Cloud Technologies and Applications, Marrakech, 2015, pp. 1-5.10.1109/CloudTech.2015.7336997
  33. 33. Khattab, A., Z. Jeddi, E. Amini, M. Bayoum. RFID Security Threats and Basic Solutions. – In: Md. Ismail, Md. Sawan, Eds. RFID Security. Analog Circuits and Signal Processing. Springer, AG, 2017, pp. 27-41.10.1007/978-3-319-47545-5_2
  34. 34. Pippal, R. S., C. D. Jaidhar, S. Tapaswi. Security Issues in Smart Card Authentication Scheme. – International Journal of Computer Theory and Engineering, Vol. 4, 2012, No 2, pp. 206-211.10.7763/IJCTE.2012.V4.452
  35. 35. Mahanta, H. J., A. K. Azad, A. K. Khan. Power Analysis Attack: A Vulnerability to Smart Card Security. – In: Proc. of International Conference on Signal Processing and Communication Engineering Systems, Guntur, 2015, pp. 506-510.10.1109/SPACES.2015.7058206
  36. 36. Handschuh, H., E. Trichina. High Density Smart Cards: New Security Challenges and Applications. – In: Proc. of Highlights of the Information Security Solutions Europe/SECURE 2007 Conference, Europe, 2007, pp 251-259.10.1007/978-3-8348-9418-2_26
  37. 37. Delfs, H., H. Knebl. Introduction to Cryptography. Chapter 2 – Symmetric-Key Cryptography. Berlin, Springer, 2015, pp. 11-48.10.1007/978-3-662-47974-2_2
  38. 38. Wardlaw, W. P. The RSA Public Key Cryptosystem. – In: D. Joyner, Ed. Coding Theory and Cryptography. Berlin, Springer, 2000, pp. 101-123.10.1007/978-3-642-59663-6_6
  39. 39. Jao, D. Elliptic Curve Cryptography. – In: P. Stavroulakis, M. Stamp, Eds. Handbook of Information and Communication Security. Berlin, Springer, 2010, pp. 35-57.10.1007/978-3-642-04117-4_3
  40. 40. Díaz, R. D., V. G. Martínez, L. H. Encinas, A. M. Muñoz. A Study on the Performance of Secure Elliptic Curves for Cryptographic Purposes. – In: M. Graña, G. J. López, O. Etxaniz, Á. Herrero, H. Quintián, E. Corchado, Eds. Advances in Intelligent Systems and Computing. Vol. 527. Berlin, Springer, 2016, pp. 658-667.10.1007/978-3-319-47364-2_64
  41. 41. Boneh, D., M. Franklin. Identity-Based Encryption from the Weil Pairing. – In: J. Kilian, Ed. Advances in Cryptology – CRYPTO’2001. Vol. 2139. Berlin, Springer, 2001, pp. 213-229.10.1007/3-540-44647-8_13
  42. 42. Rosli, R., Y. M. Yusoff, H. Hashim. A Review on Pairing Based Cryptography in Wireless Sensor Networks. – In: Proc. of IEEE Symposium on Wireless Technology and Applications (ISWTA’11), Langkawi, 2011, pp. 48-51.10.1109/ISWTA.2011.6089551
  43. 43. Preneel, B. Cryptographic Hash Functions: Theory and Practice. – In: G. Gong, K. C. Gupta, Eds. Progress in Cryptology INDOCRYPT 2010. Lecture Notes in Computer Science. Vol. 6498. Berlin, Springer, 2010, pp. 115-117.10.1007/978-3-642-17401-8_9
  44. 44. Bogdanov, A., M. Knežević, G. Leander, D. Toz, K. Varıcı, I. Verbauwhede. SPONGENT: A Lightweight Hash Function. – In: B. Preneel, T. Takagi, Eds. Cryptographic Hardware and Embedded Systems – CHES 2011. Lecture Notes in Computer Science. Vol. 6917. Berlin, Springer, 2011, pp. 312-325.10.1007/978-3-642-23951-9_21
  45. 45. Berger, T. P., J. D. Hayer, K. Marquet, M. Minier, G. Thomas. The GLUON Family: A Lightweight Hash Function Family Based on FCSRs. – In: A. Mitrokotsa, S. Vaudenay, Eds. Progress in Cryptology – AFRICACRYPT 2012. Lecture Notes in Computer Science. Vol. 7374. Berlin, Springer, 2012, pp. 306-323.10.1007/978-3-642-31410-0_19
  46. 46. Guo, J., T. Peyrin, A. Poschmann. The PHOTON Family of Lightweight Hash Functions. – In: P. Rogaway, Ed. Advances in Cryptology – CRYPTO 2011. Lecture Notes in Computer Science. Vol. 6841. Berlin, Springer, 2011, pp. 222-239.10.1007/978-3-642-22792-9_13
  47. 47. Mukundan, P. M., S. Manayankath, C. Srinivasan, M. Sethumadhavan. Hash-One: A Lightweight Cryptographic Hash Function. – IET Information Security, Vol. 10, 2016, No 5, pp. 225-231.10.1049/iet-ifs.2015.0385
  48. 48. Bussi, K., D. Dey, M. K. Biswas, B. K. Dass. Neeva: A Lightweight Hash Function. – IACR Cryptology ePrint Archive, Vol. 2016, 2016, pp. 1-14.
  49. 49. Jatoi, P. A., A. A. Memon, B. S. Chowdhry, M. G. Ullah, S. Latif. An Efficient Hybrid Cryptographic Algorithm, Consuming Less Time for Exchanging Information in Wireless Sensor Networks. – Wireless Personal Communications, Vol. 85, 2015, No 2, pp. 449-462.10.1007/s11277-015-2748-9
  50. 50. Burmester, M., B. D. Medeiros. RFID Security: Attacks, Countermeasures and Challenges. – In: Proc. of 5th RFID Academic Convocation, RFID Journal Conference, Canada, 2007.
  51. 51. Bernstein, D. A State-of-the-Art Message-Authentication Code. – In: D. Bernstein’s Webpage, 2005. http://cr.yp.to/mac.html10.1007/11502760_3
  52. 52. Moein, S., T. A. Gulliver, F. Gebali, A. Alkandari. Hardware Attack Mitigation Techniques Analysis. – International Journal on Cryptography and Information Security (IJCIS), Vol. 7, 2017, No 7, pp. 9-28.10.5121/ijcis.2017.7102
  53. 53. Barenghi, A., L. Breveglieri, I. Koren, D. Naccache. Fault Injection Attacks on Cryptographic Devices: Theory, Practice, and Countermeasures. – Proceedings of IEEE, Vol. 100, 2012, No 11, pp. 3056-3076.10.1109/JPROC.2012.2188769
  54. 54. Bu, K., M. Weng, Y. Zheng, B. Xiao, X. Liu. You Can Clone but You Cannot Hide: A Survey of Clone Prevention and Detection for RFID. – IEEE Communications Surveys & Tutorials, Vol. 19, 2017, No 3, pp. 1682-1700.10.1109/COMST.2017.2688411
  55. 55. Khan, W. Z., M. N. Mohamad Saad, M. Y. Aalsalem. Scrutinising Well-Known Countermeasures against Clone Node Attack in Mobile Wireless Sensor Networks. – International Journal of Grid and Utility Computing, Vol. 4, 2013, No 2/3, pp. 119-127.10.1504/IJGUC.2013.056247
  56. 56. Santis, A. D, C. Soriente. Modified Original Smart Cards and Smart Card Clone Countermeasures. – In: Proc. of International Conference on Computational Intelligence and Security (CIS’07), Harbin, 2007, pp. 878-882.10.1109/CIS.2007.187
  57. 57. Mpitziopoulos, A., D. Gavalas, C. Konstantopoulos, G. Pantziou. A Survey on Jamming Attacks and Countermeasures in WSNs. – IEEE Communications Surveys & Tutorials, Vol. 11, 2009, No 4, pp. 42-56.10.1109/SURV.2009.090404
  58. 58. Jaitly, S., H. Malhotra, B. Bhushan. Security Vulnerabilities and Countermeasures against Jamming Attacks in Wireless Sensor Networks: A Survey. – In: Proc. of International Conference on Computer, Communications and Electronics (Comptelix), Jaipur, 2017, pp. 559-564.10.1109/COMPTELIX.2017.8004033
  59. 59. Lopez, P. P., J. C. H. Castro, M. Juan, E. Tapiador, A. Ribagorda. Attacking RFID Systems. – In: Y. Zhang, P. Kitsos, Eds. Wireless Networks and Mobile Communications Series: Security in RFID and Sensor Networks. CRC Press, Florida, 2009, pp. 29-48.
  60. 60. Bokslag, W. Reverse Engineering of RFID Devices. – CoRR, 2015, Vol. abs/1507.02196, pp. 1-14.
  61. 61. Dai, H., H. Wang, H. Xiao, X. Li, Q. Wang. On Eavesdropping Attacks in Wireless Networks. – In: Proc. of IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business Engineering (DCABES’16), Paris, 2016, pp. 138-141.10.1109/CSE-EUC-DCABES.2016.173
  62. 62. Bhardwaj, I., A. Kumar, M. Bansal. A Review on Lightweight Cryptography Algorithms for Data Security and Authentication in IoTs. – In: Proc. of 4th International Conference on Signal Processing, Computing and Control (ISPCC’17), Solan, 2017, pp. 504-509.10.1109/ISPCC.2017.8269731
  63. 63. Alotaibi, B., K. Elleithy. A New MAC Address Spoofing Detection Technique Based on Random Forests. – Sensors, Vol. 16, 2016, No 3, p. 281.10.3390/s16030281481385626927103
  64. 64. Khemissa, H., D. Tandjaoui, S. Bouzefrane. An Ultra-Lightweight Authentication Scheme for Heterogeneous Wireless Sensor Networks in the Context of Internet of Things. – In: S. Bouzefrane, S. Banerjee, F. Sailhan, S. Boumerdassi, E. Renault, Eds. Mobile, Secure, and Programmable Networking. MSPN 2017. Lecture Notes in Computer Science. Vol. 10566. Berlin, Springer, 2017, pp. 49-62.10.1007/978-3-319-67807-8_4
  65. 65. Haver, T. Security and Privacy in RFID Applications. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2006.
  66. 66. Weis, S. A. Security and Privacy in Radio-Frequency Identification Devices. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, 2003.
  67. 67. Sharma, V., M. Hussain. Mitigating Replay Attack in Wireless Sensor Network Through Assortment of Packets. – In: S. Satapathy, V. Prasad, B. Rani, S. Udgata, K. Raju, Eds. Proc. of 1st International Conference on Computational Intelligence and Informatics. Advances in Intelligent Systems and Computing, Springer, Singapore. Vol. 507. 2016, pp. 221-230.10.1007/978-981-10-2471-9_22
  68. 68. Wang, Q., T. Dunlap, Y. Cho, G. Qu. DoS Attacks and Countermeasures on Network Devices. – In: Proc. of 26th Wireless and Optical Communication Conference (WOCC’17), Newark, 2017, pp. 1-6.10.1109/WOCC.2017.7928974
  69. 69. Gassend, B., D. Clarke, M. V. Dijk, S. Devadas. Silicon Physical Random Functions. – In: Proc. of 9th ACM Conference on Computer and Communications Security. ACM, 2002, pp. 148-160.10.1145/586110.586132
  70. 70. Standaert, F. X. Introduction to Side-Channel Attacks. – In: I. M. R. Verbauwhede, Ed. Secure Integrated Circuits and Systems. Integrated Circuits and Systems. Boston, Springer, 2010, pp. 27-42.10.1007/978-0-387-71829-3_2
  71. 71. Khan, A. K., H. J. Mahanta. Side Channel Attacks and Their Mitigation Techniques. – In: Proc. of 1st International Conference on Automation, Control, Energy and Systems (ACES’14), Hooghy, 2014, pp. 1-4.10.1109/ACES.2014.6807983
  72. 72. Ge, Q., Y. Yarom, D. Cock, G. Heiser. A Survey of Microarchitectural Timing Attacks and Countermeasures on Contemporary Hardware. – Journal of Cryptographic Engineering, Vol. 2018, No 1. DOI 10.1007/s13389-016-0141-6.10.1007/s13389-016-0141-6
  73. 73. Rohatgi, P. Electromagnetic Attacks and Countermeasures. – In: C. K. Koc, Ed. Cryptographic Engineering. Berlin, Springer, 2009, pp. 407-430.10.1007/978-0-387-71817-0_15
  74. 74. Popp, T., E. Oswald, S. Mangard. Power Analysis Attacks and Countermeasures. – IEEE Design & Test of Computers, Vol. 24, 2007, No 6, pp. 535-543.10.1109/MDT.2007.200
  75. 75. Mahanta, H. J., A. K. Azad, A. K. Khan. Differential Power Analysis: Attacks and Resisting Techniques. – In: J. Mandal, S. Satapathy, M. K. Sanyal, P. P. Sarkar, A. Mukhopadhyay, Eds. Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing. Vol. 340. New Delhi, Springer, 2015, pp. 349-358.10.1007/978-81-322-2247-7_36
  76. 76. Dubai, M. J., T. R. Mahesh, P. A. Ghosh. Design of New Security Algorithm: Using Hybrid Cryptography Architecture. – In: Proc. of 3rd International Conference on Electronics Computer Technology, Kanyakumari, 2011, pp. 99-101.10.1109/ICECTECH.2011.5941965
  77. 77. Chourasia, S., K. N. Singh. An Efficient Hybrid Encryption Technique Based on DES and RSA for Textual Data. – In: S. Satapathy, J. Mandal, S. Udgata, V. Bhateja, Eds. Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing. Vol. 433. New Delhi, Springer, 2016, pp. 73-80.10.1007/978-81-322-2755-7_9
  78. 78. Prakash, S., A. Rajput. Hybrid Cryptography for Secure Data Communication in Wireless Sensor Networks. – In: Proc. of 2nd International Conference on Computer, Communication and Computational Sciences (RACCCS’17), Ajmer, 2017 pp 1-10.
  79. 79. Rachmawati, D., A. Sharif, Jaysilen, M. A. Budiman. Hybrid Cryptosystem Using Tiny Encryption Algorithm and LUC Algorithm. – In: Proc. of 4th International Conference on Operational Research, IOP Conference Series: Materials Science and Engineering, Medan, 2018, pp 1-7.10.1088/1757-899X/300/1/012042
  80. 80. Zheng, Y. Digital Signcryption or How to Achieve Cost(Signature Encryption) « Cost(Signature) + Cost(Encryption). – In: Proc. of 17th Annual International Cryptology Conference on Advances in Cryptology (CRYPTO’97), London, 1997, pp. 165-179.10.1007/BFb0052234
  81. 81. Cao, Z., L. Liu. On the Disadvantages of Pairing-Based Cryptography. – IACR Cryptology e-Print Archive, Vol. 2015, pp. 84.
  82. 82. Zheng, Y., H. Imai. How to Construct Efficient Signcryption Schemes on Elliptic Curves. – Information Processing Letters, Vol. 68, 1998, No 5, pp. 227-233.10.1016/S0020-0190(98)00167-7
  83. 83. Hwang, R. J., C. H. Lai, F. F. Su. An Effcient Signcryption Scheme with Forward Secrecy Based on Elliptic Curve. – Journal of Applied Mathematics and Computation, Vol. 167, 2005, No 2, pp. 870-881.10.1016/j.amc.2004.06.124
  84. 84. Toorani, M., A. A. B. Shirazi. An Elliptic Curve-Based Signcryption Scheme with Forward Secrecy. – Journal of Applied Sciences, Vol. 9, 2009, No 6, pp. 1025-1035.10.3923/jas.2009.1025.1035
  85. 85. Bala, S., G. Sharma, A. K. Verma. An Improved Forward Secure Elliptic Curve Signcryption Key Management Scheme for Wireless Sensor Networks. – In: J. Kim, K. Y. Chung, Eds. IT Convergence and Security. Lecture Notes in Electrical Engineering. Vol. 215. Dordrecht, Springer, 2012, pp. 141-149.10.1007/978-94-007-5860-5_17
  86. 86. Chaudhry, S. A., M. S. Farash, H. Naqvi, M. Sher. A Secure and Efficient Authenticated Encryption for Electronic Payment Systems Using Elliptic Curve Cryptography. – Electronic Commerce Research, Vol. 16, 2016, No 1, pp. 113-139.10.1007/s10660-015-9192-5
  87. 87. Toorani, M., A. A. B. Shirazi. Cryptanalysis of an Elliptic Curve-Based Signcryption Scheme. – International Journal of Network Security, Vol. 10, 2010, No 1, pp. 51-56.
  88. 88. Hagras, E. A., D. E. Saied, H. H. Aly. A New Forward Secure Elliptic Curve Signcryption Key Management (FS-ECSKM) Scheme for Heterogeneous Wireless Sensor Networks. – International Journal of Computer Science and Technology, Vol. 2, 2011, No 2, pp. 19-23.
  89. 89. Amounas, F., H. Sadki, E. H. E. Kinani. An Efficient Signcryption Scheme Based on the Elliptic Curve Discrete Logarithm Problem. – International Journal of Information & Network Security, Vol. 2, 2013, No 3, pp. 253-259.10.11591/ijins.v2i3.2420
  90. 90. Wu, F., L. Xu, S. Kumari, X. Li, A. K. Das, M. K. Khan, M. Karuppiah, R. Baliyan. A Novel and Provably Secure Authentication and Key Agreement Scheme with User Anonymity for Global Mobility Networks. – Security and Communication Networks, Vol. 9, 2016, pp. 3527-3542.10.1002/sec.1558
  91. 91. Choi, Y., D. Lee, J. Kim, J. Jung, J. Nam, D. Won. Security Enhanced User Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves Cryptography. – Sensors, Vol. 14, 2014, pp. 10081-10106.10.3390/s140610081411836824919012
  92. 92. He, D., N. Kumar, N. Chilamkurti. A Secure Temporal-Credential-Based Mutual Authentication and Key Agreement Scheme with Pseudo Identity for Wireless Sensor Networks. – Information Sciences, Vol. 321, 2015, pp. 263-277.10.1016/j.ins.2015.02.010
  93. 93. Jiang, Q., S. Zeadally, J. Ma, D. He. Lightweight Three-Factor Authentication and Key Agreement Protocol for Internet-Integrated Wireless Sensor Networks. – IEEE Access, Vol. 5, 2017, pp. 3376-3392.10.1109/ACCESS.2017.2673239
  94. 94. Wang, C., G. Xu, J. Sun. An Enhanced Three-Factor User Authentication Scheme Using Elliptic Curve Cryptosystem for Wireless Sensor Networks. – Sensors, Vol. 17, 2017, pp. 1-20.10.3390/s17122946575078129257066
  95. 95. Zhang, K., K. Xu, F. Wei. A Provably Secure Anonymous Authenticated Key Exchange Protocol Based on ECC for Wireless Sensor Networks. – Wireless Communications and Mobile Computing, Vol. 2018, 2018, pp. 1-9.10.1155/2018/2484268
  96. 96. Li, X., J. Niu, S. Kumari, F. Wu, A. K. Sangaiah, K. R. Choo. A Three-Factor Anonymous Authentication Scheme for Wireless Sensor Networks in Internet of Things Environments. – Journal of Network and Computer Applications, Vol. 103, 2018, pp. 194-204.10.1016/j.jnca.2017.07.001
  97. 97. Gódor, G., N. Giczi, S. Imre. Elliptic Curve Cryptography Based Mutual Authentication Protocol for Low Computational Capacity RFID Systems – Performance Analysis by Simulations. – In: Proc. of IEEE International Conference on Wireless Communications, Networking and Information Security, Beijing, 2010, pp. 650-657.10.1109/WCINS.2010.5541860
  98. 98. Zhang, X., L. Linsen, Y. Wu, Q. Zhang. An ECDLP-Based Randomized Key RFID Authentication Protocol. – In: Proc. of International Conference on Network Computing and Information Security, Guilin, 2011, pp. 146-149.10.1109/NCIS.2011.128
  99. 99. Zhao, Z. A Secure RFID Authentication Protocol for Healthcare Environments Using Elliptic Curve Cryptosystem. – Journal of Medical Systems, Vol. 38, 2014, No 5, pp. 1-7.10.1007/s10916-014-0046-924756871
  100. 100. Liao, Y. P., C. M. Hsiao. A Secure ECC-Based RFID Authentication Scheme Integrated with ID-Verifier Transfer Protocol. – Ad Hoc Networks, Vol. 18, 2014, pp. 133-146.10.1016/j.adhoc.2013.02.004
  101. 101. Alamr, A. A., F. Kausar, J. S. Kim. Secure Mutual Authentication Protocol for RFID Based on Elliptic Curve Cryptography. – In: Proc. of International Conference on Platform Technology and Service (PlatCon), Jeju, Korea, 2016, pp. 1-7.10.1109/PlatCon.2016.7456822
  102. 102. Jin, C., C. Xu, X. Zhang, F. Li. A Secure ECC-Based RFID Mutual Authentication Protocol to Enhance Patient Medication Safety. – Journal of Medical Systems, Vol. 40, 2015, No 1, pp. 1-6.10.1007/s10916-015-0362-826573649
  103. 103. Zheng, L., Y. Xue, L. Zhang, R. Zhang. Mutual Authentication Protocol for RFID Based on ECC. – In: Proc. of IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, 2017, pp. 320-323.10.1109/CSE-EUC.2017.245
  104. 104. Dinarvand, N., H. Barati. An Efficient and Secure RFID Authentication Protocol Using Elliptic Curve Cryptography. – Wireless Networks, Vol. 2017, 2017, pp. 1-15.10.1007/s11276-017-1565-3
  105. 105. Xie, Q., D. S. Wong, G. Wang, X. Tan, K. Chen, L. Fang. Provably Secure Dynamic ID-Based Anonymous Two-Factor Authenticated Key Exchange Protocol with Extended Security Model. – IEEE Transactions on Information Forensics and Security, Vol. 12, 2017, No 6, pp. 1382-1392.10.1109/TIFS.2017.2659640
  106. 106. Pippal, R. S., C. D. Jaidhar, S. Tapaswi. Robust Smart Card Authentication Scheme for Multi-Server Architecture. – Wireless Personal Communications, Vol. 72, 2013, No 1, pp. 729-745.10.1007/s11277-013-1039-6
  107. 107. Yeh, K. H. A Provably Secure Multi-Server Based Authentication Scheme. – Wireless Personal Communications, Vol. 79, 2014, No 3, pp. 1621-1634.10.1007/s11277-014-1948-z
  108. 108. Wang, D., N. Wang, P. Wang, S. Qing. Preserving Privacy for Free Efficient and Provably Secure Two-Factor Authentication Scheme with User Anonymity. – Information Sciences, Vol. 321, 2015, pp. 162-178.10.1016/j.ins.2015.03.070
  109. 109. Odelu, V., A. K. Das, A. Goswami. An Effective and Robust Secure Remote User Authenticated Key Agreement Scheme Using Smart Sards in Wireless Communication Systems. – Wireless Personal Communications, Vol. 84, 2015, No 4, pp. 2571-2598.10.1007/s11277-015-2721-7
  110. 110. Chaudhry, S. A., H. Naqvi, K. Mahmood, H. F. Ahmad, M. K. Khan. An Improved Remote User Authentication Scheme Using Elliptic Curve Cryptography. – Wireless Personal Communications, Vol. 2016, 2016. Doi: 10.1007/s11277-016-3745-3.10.1007/s11277-016-3745-3
  111. 111. Truong, T. T, M. T. Tran, A. D. Duong, I. Echizen. Provable Identity Based User Authentication Scheme on ECC in Multi-Server Environment. – Wireless Personal Communications, Vol. 95, 2017, No 3, pp. 2785-2801.10.1007/s11277-017-3961-5
  112. 112. Zhao, Y., S. Li, L. Jiang. Secure and Efficient User Authentication Scheme Based on Password and Smart Card for Multiserver Environment. – Security and Communication Networks, Vol. 2018, 2018, pp. 1-13.10.1155/2018/9178941
  113. 113. Singh, P., P. Shende. Symmetric Key Cryptography: Current Trends. – International Journal of Computer Science and Mobile Computing, Vol. 3, 2014, No 12, pp. 410-415.
  114. 114. Mushtaq, M. F., S. Jamel, A. H. Disina, Z. A. Pindar, N. S. A. Shakir, M. M. Deris. A Survey on the Cryptographic Encryption Algorithms. – International Journal of Advanced Computer Science and Applications, Vol. 8, 2017, No 11, pp. 333-344.10.14569/IJACSA.2017.081141
  115. 115. Mitali, V. Kumar, A. Sharma. A Survey on Various Cryptography Techniques. – International Journal of Emerging Trends & Technology in Computer Science, Vol. 3, 2014, No 4, pp. 307-312.
  116. 116. Singh, S. R., A. K. Khan, T. S. Singh. A Critical Review on Elliptic Curve Cryptography. – In: Proc. of International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT’16), Pune, 2016, pp. 13-18.10.1109/ICACDOT.2016.7877543
DOI: https://doi.org/10.2478/cait-2019-0008 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 133 - 164
Submitted on: Sep 7, 2018
Accepted on: Dec 27, 2018
Published on: Mar 29, 2019
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Anuj Kumar Singh, B. D. K. Patro, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.