Have a personal or library account? Click to login
Deep Learning for Plant Classification and Content-Based Image Retrieval Cover

Deep Learning for Plant Classification and Content-Based Image Retrieval

Open Access
|Mar 2019

References

  1. 1. Bonnet, P., A. Joly, H. Goëau, J. Champ, C. Vignau, J. F. Molino, D. Barthélémy, N. Boujemaa. Plant Identification: Man vs. Machine. – Multimedia Tools and Applications, Vol. 75, 2016, No 3, pp. 1647-1665.10.1007/s11042-015-2607-4
  2. 2. Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna. Rethinking the Inception Architecture for Computer Vision. – arXiv preprint arXiv:1512.00567, 2015.10.1109/CVPR.2016.308
  3. 3. Champ, J., T. Lorieul, M. Servajean, A. Joly. A Comparative Study of Fine-Grained Classification Methods in the Context of the Lifeclef Plant Identification Challenge 2015. – In: Working Notes of CLEF 2015 Conference, 2015.
  4. 4. Chen, Q., M. Abedini, R. Garnavi, X. Liang. IBM Research Australia at LifeCLEF2014: Plant Identification Task. – In: Working Notes of CLEF 2014 Conference, 2014., pp. 693-704.
  5. 5. Cope, J. S., D. Corney, J. Y. Clark, P. Remagnino, P. Wilkin. Plant Species Identification Using Digital Morphometrics: A Review. – Expert Systems with Applications, Vol. 39, 2012, No 8, pp. 7562-7573.10.1016/j.eswa.2012.01.073
  6. 6. Duchi, J., E. Hazan, Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. – The Journal of Machine Learning Research, Vol. 12, 2011, pp. 2121-2159.
  7. 7. Ge, Z., C. Mccool, P. Corke. Content Specific Feature Learning for Fine-Grained Plant Classification. – In: Working Notes of CLEF 2015 Conference, 2015.10.1109/CVPRW.2015.7301271
  8. 8. Göeau, H., A. Joly, B. Pierre. LifeCLEF Plant Identification Task 2015. – CLEF Working Notes, 2015.
  9. 9. He, K., X. Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition. – In Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778.10.1109/CVPR.2016.90
  10. 10. He, K., X. Zhang, S. Ren, J. Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification. – In: Proc. of IEEE International Conference on Computer Vision, 2015, pp. 1026-1034.10.1109/ICCV.2015.123
  11. 11. Ioffe, S., C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. – arXiv preprint arXiv:1502.03167, 2015.
  12. 12. Kadir, A., L. E. Nugroho, A. Susanto, P. I. Santosa. Leaf Classification Using Shape, Color, and Texture Features. – International Journal of Computer Trends and Technology, Vol. 1, July-August 2011, No 3, pp. 306-311.10.5121/ijcsit.2011.3318
  13. 13. Krizhevsky, A., I. Sutskever, G. E. Hinton. Imagenet Classification with Deep Convolutional Neural Networks. – In: Advances in Neural Information Processing Systems, 2012, pp. 1097-1105.
  14. 14. Kumar, N., P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress, I. C. Lopez, J. V. Soares. Leafsnap: A Computer Vision System for Automatic Plant Species Identification. – In: Computer Vision ECCV’2012. Berlin, Heidelberg, Springer, 2012, pp. 502-516.10.1007/978-3-642-33709-3_36
  15. 15. LeCun, B. B., J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel. Handwritten Digit Recognition with a Back-Propagation Network. – In: Advances in Neural Information Processing Systems, Vol. 2, 1990, pp. 396-404.
  16. 16. Le, T. L., D. N. Dng, H. Vu, T. N Nguyen. Mica at Lifeclef 2015: Multi-Organ Plant Identification. – In: Working Notes of CLEF 2015 Conference, 2015.
  17. 17. LeCun, Y., L. Bottou, G. Orr, K. Muller. Efficient Backprop. – In: G. Orr, K. Muller, Eds. Neural Networks: Tricks of the Trade. Springer, 1998, pp. 9-48.10.1007/3-540-49430-8_2
  18. 18. Long, X., H. Lu, Y. Peng, X. Wang, S. Feng. Image Classification Based on Improved VLAD. – Multimedia Tools and Applications, Vol. 75, 2016, Issue 10, pp. 5533-5555.10.1007/s11042-015-2524-6
  19. 19. Maas, A. L., Y. H. Awni, A. Y. Ng. Rectifier Nonlinearities Improve Neural Network Acoustic Models. – In: Proc. ICML, Vol. 30, 2013, p. 1.
  20. 20. Sermanet, P., D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun. Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks. – arXiv preprint arXiv:1312.6229, 2013.
  21. 21. Reyes, A. K., J. C. Caicedo, J. E. Camargo. Fine-Tuning Deep Convolutional Networks for Plant Recognition. – In: Working Notes of CLEF 2015 Conference, 2015.
  22. 22. Robertson, S. A New Interpretation of Average Precision. – In: Proc. of 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, 2008, pp. 689-690.10.1145/1390334.1390453
  23. 23. Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Hunag, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei. Imagenet Large Scale Visual Recognition Challenge. – International Journal of Computer Vision, Vol. 115, 2015, No 3, pp. 211-252.10.1007/s11263-015-0816-y
  24. 24. Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. – The Journal of Machine Learning Research, Vol. 15, 2014, No 1, pp. 1929-1958.
  25. 25. Sünderhauf, N., C. McCool, B. Upcroft, T. Perez. Fine-Grained Plant Classification Using Convolutional Neural Networks for Feature Extraction. – In: Working Notes of CLEF 2014 Conference, 2014., pp. 756-762.
  26. 26. Sungbin, C. Plant Identification with Deep Convolutional Neural Network: SNUMedinfo at LifeCLEF Plant Identification Task 2015. – In: Working Notes of CLEF 2015 Conference, 2015.
  27. 27. Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich. Going Deeper with Convolutions. – In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1-9.10.1109/CVPR.2015.7298594
  28. 28. Szegedy, C., S. Ioffe, V. Vanhoucke. Inception-v4, Inception-Resnet and the Impact of Residual Connections on Learning. – arXiv Preprint arXiv:1602.07261, 2016.10.1609/aaai.v31i1.11231
  29. 29. Szűcs, G., D. Papp, D. Lovas. Viewpoints Combined Classification Method in Image-Based Plant Identification Task. – In: L. Cappellato, N. Ferro, M. Halvey, W. Kraaij, Eds. Working Notes for CLEF 2014 Conference, Sheffield, Great Britain, Vol. 1180, 15-18 September 2014, pp. 763-770.
  30. 30. Nair, V., G. E. Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines. – In: Proc. of 27th International Conference on Machine Learning, 2010, pp. 807-814.
  31. 31. Wu, S. G., F. S. Bao, E. Y. Xu, Y. X. Wang, Y. F. Chang, Q. L. Xiang. A Leaf Recognition Algorithm for Plant Classification Using Probabilistic Neural Network. – In: IEEE International Symposium on Signal Processing and Information Technology, 2007, pp. 11-16.10.1109/ISSPIT.2007.4458016
  32. 32. Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method. – arXiv preprint arXiv:1212.5701, 2012.
DOI: https://doi.org/10.2478/cait-2019-0005 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 88 - 100
Submitted on: Sep 25, 2018
Accepted on: Dec 20, 2018
Published on: Mar 29, 2019
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Bálint Pál Gyires-Tóth, Márton Osváth, Dávid Papp, Gábor Szűcs, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.