Have a personal or library account? Click to login
A Review of Feature Selection and Its Methods Cover
By: B. Venkatesh and  J. Anuradha  
Open Access
|Mar 2019

Abstract

Nowadays, being in digital era the data generated by various applications are increasing drastically both row-wise and column wise; this creates a bottleneck for analytics and also increases the burden of machine learning algorithms that work for pattern recognition. This cause of dimensionality can be handled through reduction techniques. The Dimensionality Reduction (DR) can be handled in two ways namely Feature Selection (FS) and Feature Extraction (FE). This paper focuses on a survey of feature selection methods, from this extensive survey we can conclude that most of the FS methods use static data. However, after the emergence of IoT and web-based applications, the data are generated dynamically and grow in a fast rate, so it is likely to have noisy data, it also hinders the performance of the algorithm. With the increase in the size of the data set, the scalability of the FS methods becomes jeopardized. So the existing DR algorithms do not address the issues with the dynamic data. Using FS methods not only reduces the burden of the data but also avoids overfitting of the model.

DOI: https://doi.org/10.2478/cait-2019-0001 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 3 - 26
Submitted on: Feb 2, 2018
Accepted on: Feb 7, 2019
Published on: Mar 29, 2019
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 B. Venkatesh, J. Anuradha, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.