Have a personal or library account? Click to login
How Phishing Pages Look Like? Cover

References

  1. 1. The Human Factor: People-Centered Threats Define the Landscape [Internet]. Proofpoint, 2018. https://www.proofpoint.com/us/human-factor-2018
  2. 2. Lazar, L. Our Analysis of 1,019 Phishing Kits – Blog | Imperva. – In: Blog | Imperva [Internet]. 4 January 2018 [cited 4 July 2018]. https://www.imperva.com/blog/2018/01/our-analysis-of-1019-phishing-kits/
  3. 3. Maurer, M.-E., D. Herzner. Using Visual Website Similarity for Phishing Detection and Reporting. – CHI’12 Extended Abstracts on Human Factors in Computing Systems, New York, NY, USA, ACM, 2012, pp. 1625-1630.10.1145/2212776.2223683
  4. 4. Afroz, S., R. Greenstadt. PhishZoo: Detecting Phishing Websites by Looking at Them. – In: 2011 IEEE 5th International Conference on Semantic Computing, 2011, pp. 368-375.10.1109/ICSC.2011.52
  5. 5. Chen, T.-C., S. Dick, J. Miller. Detecting Visually Similar Web Pages: Application to Phishing Detection. – ACM Trans. Internet Technol., New York, NY, USA, ACM, Vol. 10, 2010, pp. 5:1-5:38.10.1145/1754393.1754394
  6. 6. Medvet, E., E. Kirda, C. Kruegel. Visual-Similarity-Based Phishing Detection. – In: Proc. of 4th International Conference on Security and Privacy in Communication Netowrks, New York, NY, USA, ACM, 2008, pp. 22:1-22:6.10.1145/1460877.1460905
  7. 7. Lowe, D. G. Distinctive Image Features from Scale-Invariant Keypoints. – Int. J. Comput. Vis., Vol. 60, 2004, pp. 91-110.10.1023/B:VISI.0000029664.99615.94
  8. 8. Bay, H., A. Ess, T. Tuytelaars, L. Van Gool. Speeded-Up Robust Features (SURF). – Comput Vis Image Underst., Vol. 110, 2008, pp. 346-359.10.1016/j.cviu.2007.09.014
  9. 9. Medvet, E., A. Bartoli, G. Davanzo, A. D. Lorenzo. Automatic Face Annotation in News Images by Mining the Web. – In: Proc. of 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, 2011, pp. 47-54.10.1109/WI-IAT.2011.101
  10. 10. De Lorenzo, A., E. Medvet, F. Tarlao, A. Bartoli. Personalized, Browser-Based Visual Phishing Detection Based on Deep Learning. – In: Proc. of 13th International Conference on Risks and Security of Internet and Systems (CRiSIS).
  11. 11. Chen, T.-C., T. Stepan, S. Dick, J. Miller. An Anti-Phishing System Employing Diffused Information. – ACM Trans. Inf. Syst. Secur., New York, NY, USA, ACM, Vol. 16, 2014, pp. 16:1-16:31.10.1145/2584680
  12. 12. Cilibrasi, R., P. M. B. Vitanyi. Clustering by Compression. – IEEE Trans. Inf. Theory, Piscataway, NJ, USA, IEEE Press, Vol. 51, 2005, pp. 1523-1545.10.1109/TIT.2005.844059
  13. 13. Vázquez, P.-P., J. Marco. Using Normalized Compression Distance for Image Similarity Measurement: An Experimental Study. – Vis. Comput., Vol. 28, 2012, pp. 1063-1084.10.1007/s00371-011-0651-2
  14. 14. Axelsson, S. Using Normalized Compression Distance for Classifying File Fragments. – In: Proc. of 2010 International Conference on Availability, Reliability and Security, 2010, pp. 641-646.10.1109/ARES.2010.100
  15. 15. Telles, G. P., R. Minghim, F. V. Paulovich. Normalized Compression Distance for Visual Analysis of Document Collections. – Comput. Graph., Vol. 31, 2007, pp. 327-337.10.1016/j.cag.2007.01.024
  16. 16. Bartoli, A., G. Davanzo, E. Medvet. The Reaction Time to Web Site Defacements. – IEEE Internet Comput, Vol. 13, 2009, pp. 52-58. ieeexplore.ieee.org10.1109/MIC.2009.91
DOI: https://doi.org/10.2478/cait-2018-0047 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 43 - 60
Submitted on: Oct 30, 2018
Accepted on: Nov 19, 2018
Published on: Dec 14, 2018
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 A. Bartoli, A. De Lorenzo, E. Medvet, F. Tarlao, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.