Have a personal or library account? Click to login
Spam Review Classification Using Ensemble of Global and Local Feature Selectors Cover

Spam Review Classification Using Ensemble of Global and Local Feature Selectors

Open Access
|Dec 2018

References

  1. 1. Banerjee, S., A. Y. K. Chua. Applauses in Hotel Reviews: Genuine or Deceptive? – In: Science and Information Conference (SAI), London, IEEE, 2014.10.1109/SAI.2014.6918299
  2. 2. Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.
  3. 3. Crawford, M., H. Al Najada. Survey of Review Spam Detection Using Machine Learning Techniques. – Springer, Journal of Big Data, Vol. 2, 2015, No 1, p. 23.10.1186/s40537-015-0029-9
  4. 4. Crawford, M., T. M. Khoshgoftaar, J. D. Prusa. Reducing Feature Set Explosion to Facilitate Real-World Review Spam Detection. – In: Proc. of 29th International Florida Artificial Intelligence Research Society Conference, AAAI, 2016, pp. 304-309.
  5. 5. Fei, G., A. Mukherjee, B. Lui, M. Hsu, M. Castellenos, R. Ghosh. Exploiting Burstiness in Reviews for Review Spammer Detection. – In: Proc. of 7th International Conference on Weblogs and Social Media, AAAI, 2013. pp.175-184.10.1609/icwsm.v7i1.14400
  6. 6. Forman, G. An Extensive Empirical Study of Feature Selection Metrics for Text Classification. – Journal of Machine Learning Research, Vol. 3, 2003, pp. 1289-1305.
  7. 7. Heredia, B., T. M. Khoshgoftaar, J. D. Prusa, M. Crawford. Improving Detection of Untrustworthy Online Reviews Using Ensemble Learners Combined with Feature Selection. – Springer, Social Network Analysis and Mining, Vol. 7, 2017, No 1, pp. 1-37.10.1007/s13278-017-0456-z
  8. 8. Heydari, et al. Detection of Review Spam: A Survey. – Expert Systems with Applications, Vol. 42, 2014, No 7, pp. 3634-3642.10.1016/j.eswa.2014.12.029
  9. 9. Hu, N., I. Bose, S. K. Koh, L. Liu. Manipulation of Online Reviews: An Analysis of Ratings, Readability and Sentiments. – Elsevier, Decision Support Systems, Vol. 52, 2011. pp. 674-684.10.1016/j.dss.2011.11.002
  10. 10. Jindal, N., B. Liu. Opinion Spam and Analysis. – In: Proc. of 2008 International Conference on Web Search and Data Mining, ACM, 2008, pp. 219-230.10.1145/1341531.1341560
  11. 11. Kamber, et al. Data Mining: Concepts and Techniques. Second Edition. Elsevier, 2008.
  12. 12. Li, F., M. Huang, Y. Yang, X. Zhu. Learning to Identify Review Spam. – In: Proc. of 22nd International Joint Conference in Artificial Intelligence, 2011, pp. 2488-2493.
  13. 13. Li, H., Z. Chen, A. Mukherjee, B. Liu, J. Shao. Analyzing and Detecting Opinion Spam on Large Scale Dataset via Temporal and Spatial Patterns. – In: Proc. of 9th International Conference on Web and Social Media, AAAI, 2015, pp. 634-637.10.1609/icwsm.v9i1.14652
  14. 14. Li, H., B. Liu, A. Mukherjee, J. Shao. Spotting Fake Reviews Using Positive Unlabeled Learning. – Computacion y Sistemas, Vol. 18, 2014, No 3, pp. 467-475.10.13053/cys-18-3-2035
  15. 15. Li, S., R. Xia, C. Zong, C. Huang. A Framework of Feature Selection Methods for Text Categorization. – In: Proc. of 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, 2009, pp. 692-700.10.3115/1690219.1690243
  16. 16. Lim, E. P., J. N. Nguyen, B. Liu, H. W. Lauw. Detecting Product Review Spammers Using Rating Behaviors. – In: Proc. of 19th ACM International Conference on Information and Knowledge Management, ACM, 2010, pp. 939-948.10.1145/1871437.1871557
  17. 17. Long, N. H., P. H. T. Nghia, N. M. Vuong. Opinion Spam Recognition Method for Online Reviews Using Ontological Features. – Tap Chi KHOA HOC DHSP TPHCM, Vol. 61, 2014, pp. 44-59.
  18. 18. Mukherjee, A., B. Lui, N. Glance. Spotting Fake Review Groups in Consumer Reviews. – In: Proc. of 21st International Conference on World Wide Web, ACM, 2012, pp. 191-200.10.1145/2187836.2187863
  19. 19. Mukherjee, A., et al. Spotting Opinion Spammers Using Behavioral Footprints. – In: Proc. of 19th International Conference on Knowledge Discovery and Data Mining, ACM, 2013, pp. 632-640.10.1145/2487575.2487580
  20. 20. Najada, H. Al, X. Zhu. iSRD: Spam Review Detection with Imbalanced Data Distributions. – In: Proc. of 15th International Conference on Information Reuse and Integration (IRI), IEEE, 2014, pp.553-560.10.1109/IRI.2014.7051938
  21. 21. Ott, et al. Finding Deceptive Opinion Spam by Any Stretch of Imagination. – In: 49th Annual Meeting of the Association for the Computational Linguistics, Portland, Oregon, 2011, pp 309-319.
  22. 22. Ott, et al. Estimating the Prevalence of Deception in Online Review Communities. – In: Proc. of 21st International Conference on World Wide Web, ACM, 2012.10.1145/2187836.2187864
  23. 23. Rastogi, A., M. Mehrotra. Opinion Spam Detection in Online Reviews. – Journal of Information & Knowledge Management, Vol. 16, 2017, No 4, World Scientific Press, pp. 1750036 (38 pages).10.1142/S0219649217500368
  24. 24. Rayana, S., L. Akoglu. Collective Opinion Spam Detection: Bridging Review Networks and Metadata. – In: Proc. of 21th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, ACM, 2015, pp. 985-994.10.1145/2783258.2783370
  25. 25. Savage, D., X. Zhang, X. Yu, P. Chou, Q. Wang. Detection of Opinion Spam Based on Anomalous Rating Deviation. – Expert Systems with Applications, Vol. 42, Elsevier, 2015, pp. 8650-8657.10.1016/j.eswa.2015.07.019
  26. 26. Uysal, A. K. An Improved Global Feature Selection Scheme for Text Classification. – Elsevier, Expert Systems with Applications, Vol. 43, 2016, pp. 82-92.10.1016/j.eswa.2015.08.050
  27. 27. Uysal, A. K., S. Gunal. A Novel Probabilistic Feature Selection Method for Text Classification. – Knowledge-Based Systems, Vol. 36, 2012, pp. 226-235.10.1016/j.knosys.2012.06.005
  28. 28. Wang, G., S. Xie, B. Lui, P. S. Yu. Review Graph Based Online Store Review Spammer Detection. – In: Proc. of 11th IEEE International Conference on Data Mining (ICDM’11), 2011, pp. 1242-1247.10.1109/ICDM.2011.124
  29. 29. Wang, G., S. Xie, B. Lui, P. S. Yu. Identify Online Store Review Spammers via Social Review Graph. – ACM Transactions on Intelligent Systems and Technology, Vol. 3, 2012, No 4, pp. 1-21.10.1145/2337542.2337546
DOI: https://doi.org/10.2478/cait-2018-0046 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 29 - 42
Submitted on: May 15, 2018
|
Accepted on: Nov 21, 2018
|
Published on: Dec 14, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Gunjan Ansari, Tanvir Ahmad, Mohammad Najmud Doja, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.