Have a personal or library account? Click to login
On Almost Complete Caps in PG(N, q) Cover

References

  1. 1. Bartoli, D., A. A. Davydov., G. Faina, A. A. Kreshchuk, S. Marcugini, F. Pambianco. Upper Bounds on the Smallest Size of a Complete Arc in PG(2, q) under a Certain Probabilistic Conjecture. – Problems Inform. Transm., Vol. 50, 2014, No 4, pp. 320-339.10.1134/S0032946014040036
  2. 2. Bartoli, D., A. A. Davydov., G. Faina, S. Marcugini, F. Pambianco. Conjectural Upper Bounds on the Smallest Size of a Complete ap in PG(N, q), N ≥ 3. – Electron. Notes Discrete Math., Vol. 57, 2017, pp. 15-20.10.1016/j.endm.2017.02.004
  3. 3. Bartoli, D., A. A. Davydov., S. Marcugini, F. Pambianco. On the Smallest Size of an Almost Complete Subset of a Conic in PG(2, q) and Extendability of Reed-Solomon Codes. – arXiv:1609.05657 [math.CO], 2016.
  4. 4. Bartoli, D., G. Faina, S. Marcugini, F. Pambianco. A Construction of Small Complete Caps in Projective Spaces. – J. Geom., Vol. 108, 2017, No 1, pp. 215-246.10.1007/s00022-016-0335-1
  5. 5. Clevenson, M. L., W. Watkins. Majorization and the Birthday Inequality. – Math. Magazine, Vol. 64, 1991, No 3, pp. 183-188.10.1080/0025570X.1991.11977606
  6. 6. Davydov., A. A., G. Faina, S. Marcugini, F. Pambianco. Upper Bounds on the Smallest Size of a Complete Cap in PG(N, q), N ≥ 3, under a Certain Probabilistic Conjecture. – arXiv:1706.01941 [math.CO], 2017.
  7. 7. Davydov., A. A., S. Marcugini, F. Pambianco. Upper Bounds on the Smallest Size of an Almost Complete Cap in PG(N, q). – In: Proc. of 8th International Workshop on Optimal Codes and Related Topics, OC’17 (in Second International Conference “Mathematics Days in Sofia”), Sofia, Bulgaria, 2017, pp. 67-72.
  8. 8. Hirschfeld, J. W. P. Projective Geometries over Finite Fields. Second Edition. Oxford, Oxford University Press, 1998.
  9. 9. Hirschfeld, J. W. P. Finite Projective Spaces of Three Dimensions. Oxford, Oxford University Press, 1985.
  10. 10. Hirschfeld, J. W. P., L. Storme. The Packing Problem in Statistics, Coding Theory and Finite Geometry: Update 2001. – In: A. Blokhuis, J. W. P. Hirschfeld et al. Eds. Proc. of 4th Isle of Thorns Conf., Chelwood Gate, 2000, Kluwer Academic Publisher, Boston, Finite Geometries, Developments of Mathematics, Vol. 3, 2001, pp. 201-246.10.1007/978-1-4613-0283-4_13
  11. 11. Hirschfeld, J. W. P., J. A. Thas. Open Problems in Finite Projective Spaces. – Finite Fields and their Appl., Vol. 32, 2015, No 1, pp. 44-81.10.1016/j.ffa.2014.10.006
  12. 12. Kovàcs, S. J. Small Saturated Sets in Finite Projective Planes. – Rend. Mat. (Roma), Vol. 12, 1992, No 1, pp. 157-164.
  13. 13. Sayrafiezadeh, M. The Birthday Problem Revisited – Math. Magazine, Vol. 67, 1994, No 3, pp. 220-223.10.1080/0025570X.1994.11996217
  14. 14. Storme, L. Completeness of Normal Rational Curves. – J. Algebraic Combin., Vol. 1, 1992, No 2, pp. 197-202.10.1023/A:1022428405084
  15. 15. Ughi, E. Small Almost Complete Arcs. – Discrete Math., Vol. 255, 2002, No 3, pp. 367-379.10.1016/S0012-365X(01)00412-5
DOI: https://doi.org/10.2478/cait-2018-0020 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 54 - 62
Submitted on: Sep 25, 2017
Accepted on: Dec 1, 2017
Published on: May 26, 2018
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.