Have a personal or library account? Click to login
Parallel Fast Walsh Transform Algorithm and Its Implementation with CUDA on GPUs Cover

Parallel Fast Walsh Transform Algorithm and Its Implementation with CUDA on GPUs

By: Dusan Bikov and  Iliya Bouyukliev  
Open Access
|May 2018

References

  1. 1. Alvarez-Cubero, J., P. Zufiria. A C++ Class for Analysing Vector Boolean Functions from a Cryptographic Perspective. – In: Proc. of International Conference on Security and Cryptography (SECRYPT’10), 2010, pp. 512-520.10.5220/0002964505120520
  2. 2. Andrade, J., G. Falcao, V. Silva. Optimized Fast Walsh-Hadamard Transform on GPUs for Non-Binary LDPC Decoding. – Parallel Computing, Vol. 40, 2014, No 9, pp. 449-453.10.1016/j.parco.2014.07.001
  3. 3. Bouyukliev, I., D. Bikov. Applications of the Binary Representation of Integers in Algorithms for Boolean Functions. – In: Proc. of 44th Spring Conference of the Union of Bulgarian Mathematicians, Mathematics and Education in Mathematics, 2015, pp. 161-166.
  4. 4. Carlet, C. Boolean Functions for Cryptography and Error Correcting Codes. – In: C. Crama and P. Hammer, Eds. Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge University Press, 2010, pp. 257-397.10.1017/CBO9780511780448.011
  5. 5. Copeland, A. D., N. B. Chang, S. Lung. GPU Accelerated Decoding of High Performance Error Correcting Codes. – In: Proc. of 14th Annual Workshop on HPEC, Lexington, Massachusetts, USA, 2010.
  6. 6. CUDA C Programming Guide. https://docs.nvidia.com/cuda/cuda-c-programming-guide/
  7. 7. CUDA Homepage. http://www.nvidia.com/object/cudahomenew.html
  8. 8. Demouth, J. Kepler’s Shuffle: Tips and Tricks. – GPU Technology Conference, 2013. http://on-demand.gputechconf.com/gtc/2013/presentations/S3174-Kepler-Shuffle-Tips-Tricks.pdf
  9. 9. Good, I. J. The Interaction Algorithm and Practical Fourier Analysis. – Journal of the Royal Statistical Society, Vol. 20, 1958, No 2, pp. 361-372.10.1111/j.2517-6161.1958.tb00300.x
  10. 10. Joux, A. Algorithmic Cryptanalysis. Chapman & Hall/CRC Cryptography and Network Security Series, 2009.
  11. 11. Karpovsky, M. G., R. S. Stankovic, J. T. Astola. Spectral Logic and Its Applications for the Design of Digital Devices. Wiley, 2008.10.1002/9780470289228
  12. 12. Kirk, D. B., We n-me i W. Hw u. Programming Massively Parallel Processors: A Hands-on Approach. Elsevier, 2013.
  13. 13. Kurzak, J., D. A. Bader, J. Dongarra. Scientific Computing with Multicore and Accelerators. CRC Press, 2010.10.1201/b10376
  14. 14. Lindholm, E., J. Nickolls, S. Oberman, J. Montrym. NVIDIA Tesla: A Unied Graphics and Computing Architecture. – IEEE Micro, Vol. 28, 2008, Issue 2.10.1109/MM.2008.31
  15. 15. Lobeiras, J., M. Amor, R. Doallo. BPLG: A Tuned Buttery Processing Library for GPU Architectures. – International Journal of Parallel Programming, Vol. 43, 2015, No 6, pp. 1078-1102.10.1007/s10766-014-0323-8
  16. 16. Maciol, P., K. Banas. Testing Tesla Architecture for Scientific Computing: The Performance of Matrix-Vector Product. – In: Computer Science and Information Technology, IMCSIT 2008, pp. 285-291.10.1109/IMCSIT.2008.4747253
  17. 17. MATLAB Platform for Solving Engineering and Scientific Problems. https://www.mathworks.com/products/matlab/
  18. 18. NVIDIA GeForce GT 740M Specification. http://www.geforce.com/hardware/notebook-gpus/geforce-gt-740m
  19. 19. NVIDIA GeForce GTX TITAN Specification. http://http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan/specifications
  20. 20. NVIDIA: CUDA cuFFT Library. http://docs.nvidia.com/cuda/cufft/
  21. 21. Owens, J.D., M. Houston, D. Luebke, S. Green, J. E. Stone, J. C. Phillips. GPU Computing. – Proc. of IEEE, Vol. 96, 2008, No 5, pp. 879-899.10.1109/JPROC.2008.917757
  22. 22. Picek, S., L. Batina, D. Jakobovic, B. Ege, M. Golub. S-Box, SET, Match: A Toolbox for S-Box Analysis. – In: Information Security Theory and Practice. Securing the Internet of Things, Lecture Notes in Computer Science, Vol. 8501, 2014, pp. 140-149.10.1007/978-3-662-43826-8_10
  23. 23. Sage Mathematics Software. http://www.sagemath.org/
  24. 24. Shucai, Xiao, Wu-chun Feng. Inter-Block GPU Communication via Fast Barrier Synchronization. – In: IEEE International Symposium on Parallel & Distributed Processing (IPDPS’10), 2010.10.1109/IPDPS.2010.5470477
DOI: https://doi.org/10.2478/cait-2018-0018 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 21 - 43
Submitted on: Sep 28, 2017
Accepted on: Nov 30, 2017
Published on: May 26, 2018
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Dusan Bikov, Iliya Bouyukliev, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.