Have a personal or library account? Click to login
Graph-Based Complex Representation in Inter-Sentence Relation Recognition in Polish Texts Cover

Graph-Based Complex Representation in Inter-Sentence Relation Recognition in Polish Texts

Open Access
|Mar 2018

References

  1. 1. Aleixo, P., T. A. S. Pardo. Finding Related Sentences in Multiple Documents for Multidocument Discourse Parsing of Brazilian Portuguese Texts. – In: Companion Proc. of XIV Brazilian Symposium on Multimedia and the Web, WebMedia’08, New York, USA, 2008, ACM, pp. 298-303.10.1145/1809980.1810055
  2. 2. Broda, B., M. Marcińczuk, M. Maziarz, A. Radziszewski, A. Wardyński. KPWr: Towards a Free Corpus of Polish. – In: Proc. of 8th International Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, May 2012, European Language Resources Association (ELRA), Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, Stelios Piperidis, Eds.
  3. 3. Broda, B., P. Kędzia, M. Marcińczuk, A. Radziszewski, R. Ramocki, A. Wardyński. Fextor: A Feature Extraction Framework for Natural Language Processing: A Case Study in Word Sense Disambiguation, Relation Recognition and Anaphora Resolution. – In: Computational Linguistics: Applications. Adam Przepiórkowski, Maciej Piasecki, Krzysztof Jassem, Piotr Fuglewicz, Eds. Berlin, Heidelberg, Springer, 2013, pp. 41-62.10.1007/978-3-642-34399-5_3
  4. 4. Bunke, H. On a Relation between Graph Edit Distance and Maximum Common Subgraph. – Pattern Recogn. Lett., Vol. 18, August 1997, No 9, pp. 689-694.10.1016/S0167-8655(97)00060-3
  5. 5. Bunke, H., K. Shearer. A Graph Distance Metric Based on the Maximal Common Subgraph. – Pattern Recogn. Lett., Vol. 19, March 1998, No 3-4, pp. 255-259.10.1016/S0167-8655(97)00179-7
  6. 6. Cardoso, P. C. F., E. G. Maziero, M. L. C. Jorge, E. R. M. Seno, A. Di Felippo, L. H. M. Rino, M. das G. V. Nunes, T. A. S. Pardo. CSTNews – A Discourseannotated Corpus for Single and Multi-Document Summarization of News Texts in Brazilian Portuguese. – In: Proc. of 3rd RST Brazilian Meeting, Cuiabá, Brazil, 2011, pp. 88-105.
  7. 7. Fernández, M.-L., G. Valiente. A Graph Distance Metric Combining Maximum Common Subgraph and Minimum Common Supergraph. – Pattern Recogn. Lett., Vol. 22, May 2001, No 6-7, pp. 753-758.10.1016/S0167-8655(01)00017-4
  8. 8. Harary, F., R. C. Read. Is the Null-Graph a Pointless Concept? – In: Lecture Notes in Mathematics. Vol. 406. 1974, pp. 37-44.10.1007/BFb0066433
  9. 9. Jaccard, P. The Distribution of the Flora in the Alpine Zone. – New Phytologist, Vol. 11, February 1912, No 2, pp. 37-50.10.1111/j.1469-8137.1912.tb05611.x
  10. 10. Kędzia, P., M. Maziarz. Recognizing Semantic Relations within Polish Noun Phrase: A Rule-Based Approach. – In: RANLP, 2013.
  11. 11. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. – In: Proc. of 14th International Joint Conference on Artificial Intelligence IJCAI’95, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers, Inc., Vol. 2, pp. 1137-1143.
  12. 12. Kumar, Y. J., N. Salim, A. Hamza, A. Abuobieda. Automatic Identification of Cross-Document. – Structural Relationships, Vol. 7, 2012, pp. 26-29.10.1109/InfRKM.2012.6204977
  13. 13. Kumar, Y. J., N. Salim, B. Raza. Cross-Document Structural Relationship Identification Using Supervised Machine Learning. – Appl. Soft Comput., Vol. 12, October 2012, No 10, pp. 3124-3131.10.1016/j.asoc.2012.06.017
  14. 14. Kumar, Y. J., N. Salim, A. Abuobieda, A. T. Albaham. Multi Document Summarization Based on News Components Using Fuzzy Cross-Document Relations. – Applied Soft Computing, Vol. 21, 2014, pp. 265-279.10.1016/j.asoc.2014.03.041
  15. 15. Kędzia, P., M. Piasecki. Ruled-Based, Interlingual Motivated Mapping of plWordNet onto SUMO Ontology. – In: Proc. of 9th International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland, 26-31 May 2014, Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asunción Moreno, Jan Odijk, Stelios Piperidis, Eds., pp. 4351-4358.
  16. 16. Kędzia, P., M. Piasecki, J. Kocoń, A. Indyka-Piasecka. Distributionally Extended Network-Based Word Sense Disambiguation in Semantic Clustering of Polish Texts. – IERI Procedia, Vol. 10 (Complete), 2014, pp. 38-44.10.1016/j.ieri.2014.09.073
  17. 17. Kędzia, P., M. Piasecki, M. Orlińska. Word Sense Disambiguation Based on Large Scale Polish CLARIN Heterogeneous Lexical Resources. – Cognitive Studies/Études Cognitives, Vol. 15, 2015, pp. 269-292. URL: https://ispan.waw.pl/journals/index.php/cs-ec/article/download/cs.2015.019/176510.11649/cs.2015.019
  18. 18. Landwehr, N., M. Hall, E. Frank. Logistic Model Trees. – Machine Learning, Vol. 59, 2005, No 1, pp. 161-205. ISSN 1573-0565.10.1007/s10994-005-0466-3
  19. 19. Marcińczuk, M. Automatic Construction of Complex Features in Conditional Random Fields for Named Entities Recognition. – In: RANLP, 2015.
  20. 20. Marcińczuk, M., J. Kocoń, M. Janicki. Liner2 – A Customizable Framework for Proper Names Recognition for Polish. – In: Intelligent Tools for Building a Scientific Information Platform, Robert Bembenik, Łukasz Skonieczny, Henryk Rybiński, Marzena Kryszkiewicz, Marek Niezgódka, Eds., 2013, pp. 231-253.10.1007/978-3-642-35647-6_17
  21. 21. Maziarz, M., M. Piasecki, E. Rudnicka, S. Szpakowicz, P. Kędzia. plWordNet 3.0 – A Comprehensive Lexical-Semantic Resource. – In: Proc. of 26th International Conference on Computational Linguistics, COLING 2016, Technical Papers, 11-16 December 2016, Osaka, Japan, pp. 2259-2268.
  22. 22. Maziero, E. G., M. L. D.-R. C. Jorge, T. A. S. Pardo. Revisiting Cross-Document Structure Theory for Multidocument Discourse Parsing. – Inf. Process. Manage, Vol. 50, March 2014, No 2, pp. 297-314.10.1016/j.ipm.2013.12.003
  23. 23. Nivre, J., J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kübler, S. Marinov, E. Marsi. MaltParser: A Language-Independent System for Data-Driven Dependency Parsing. – Natural Language Engineering, Vol. 13, 2007, No 2, pp. 95-135.10.1017/S1351324906004505
  24. 24. Pease, A. Ontology: A Practical Guide. Angwin, CA, Articulate Software Press, 2011.
  25. 25. Piasecki, M., S. Szpakowicz, B. Broda. A Wordnet from the Ground Up. – Oficyna Wydawnicza Politechniki Wroclawskiej, Wrocław, 2009.
  26. 26. Piasecki, M., P. Kędzia, M. Orlińska. plWordNet in Word Sense Disambiguation Task. – In: Proc. of 8th Global Wordnet Conference (GWC’16), Bucharest, 27-30 January 2016, Osaka, Japan, pp. 280-290.
  27. 27. Radev, D. R. A Common Theory of Information Fusion from Multiple Text Sources Step One: Cross-Document Structure. – In: Proc. of 1st SIGdial Workshop on Discourse and Dialogue, SIGDIAL’00, Association for Computational Linguistics, Stroudsburg, PA, USA, Vol. 10, 2000, pp. 74-83.10.3115/1117736.1117745
  28. 28. Radev, D. R., J. Otterbacher, Z. Zhang. Cst Bank: A Corpus for the Study of Cross-Document Structural Relationships. – In: European Language Resources Association, LREC, 2004.
  29. 29. Radziszewski, A. A Tiered CRF Tagger for Polish. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 215-230. https://doi.org/10.1007/978-3-642-35647-6_1610.1007/978-3-642-35647-6_16
  30. 30. Radziszewski, A., A. Pawlaczek. Language Processing and Intelligent Information Systems. – In: Proc. of 20th International Conference, IIS 2013, Warsaw, Poland, 17-18 June 2013. Chapter Incorporating Head Recognition into a CRF Chunker, Berlin, Heidelberg, Springer, 2013, pp. 22-27.10.1007/978-3-642-38634-3_3
  31. 31. Radziszewski, A., A. Wardyński, T. Śniatowski. WCCL: A Morpho-Syntactic Feature Toolkit. – In: Proc. of Balto-Slavonic Natural Language Processing Workshop (BSNLP’11), Springer, 2011.10.1007/978-3-642-23538-2_55
  32. 32. Steinwart, I., A. Christmann. Support Vector Machines. First Edition. Springer Publishing Company, Inc., 2008.
  33. 33. Wallis, W. D., P. Shoubridge, M. Kraetz, D. Ray. Graph Distances Using Graph Union. – Pattern Recogn. Lett., Vol. 22, May 2001, No 6-7, pp. 701-704.10.1016/S0167-8655(01)00022-8
  34. 34. Woliński, M. Morfeusz – A Practical Tool for the Morphological Analysis of Polish. – In: Mieczysław A. Kłopotek, Sławomir T. Wierzchoń, Krzysztof Trojanowski, Eds. Intelligent Information Processing and Web Mining, Advances in Soft Computing, Berlin, Springer, 2006, pp. 503-512.
  35. 35. Wróblewska, A., M. Woliński. Preliminary Experiments in Polish Dependency Parsing. Berlin, Heidelberg, Springer, 2012, pp. 279-292.10.1007/978-3-642-25261-7_22
  36. 36. Wróblewska, A. Polish Dependency Parser Trained on an Automatically Induced Dependency Bank. Ph.D. Dissertation, Institute of Computer Science, Polish Academy of Sciences, Warsaw, 2014.
  37. 37. Zahri, N. A. H. B., F. Fukumoto. Multi-Document Summarization Using Link Analysis Based on Rhetorical Relations between Sentences, Berlin, Heidelberg, Springer, 2011, pp. 328-338.10.1007/978-3-642-19437-5_27
  38. 38. Zhang, Z., D. Radev. Combining Labeled and Unlabeled Data for Learning Cross-Document Structural Relationships. – In: Proc. of 1st International Joint Conference on Natural Language Processing, Berlin, Heidelberg, Springer, 2005, pp. 32-41.10.1007/978-3-540-30211-7_4
  39. 39. Zhang, Z., J. Otterbacher, D. Radev. Learning Cross-Document Structural Relationships Using Boosting. – In: Proc. of 12th International Conference on Information and Knowledge Management (CIKM’03), ACM, New York, USA, 2003, pp. 124-130.10.1145/956863.956887
DOI: https://doi.org/10.2478/cait-2018-0013 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 152 - 170
Submitted on: Oct 20, 2017
Accepted on: Jan 31, 2018
Published on: Mar 30, 2018
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Arkadiusz Janz, Paweł Kędzia, Maciej Piasecki, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.