Have a personal or library account? Click to login
Malicious URLs Detection Using Decision Tree Classifiers and Majority Voting Technique Cover

Malicious URLs Detection Using Decision Tree Classifiers and Majority Voting Technique

Open Access
|Mar 2018

References

  1. 1. Patil, D. R., J. B. Patil. Survey on Malicious Web Pages Detection Techniques. – International Journal of u- and e-Service, Science and Technology, Vol. 8, 2015, No 5, pp. 195-206. http://dx.doi.org/10.14257/ijunesst.2015.8.5.1810.14257/ijunesst.2015.8.5.18
  2. 2. Provos, N., P. Mavrommatis, M. A. Rajab, F. Monrose. All Your iFRAMEs Point to Us. – In: Proc. of 17th Conference on Security Symposium (SS’08), USENIX Association Berkeley, CA, USA, 2008, pp. 1-15.
  3. 3. Liang, B., J. Huang, F. Liu, D. Wang, D. Dong, Z. Liang. Malicious Web Pages Detection Based on Abnormal Visibility Recognition. – In: Proc. of International Conference on e-Business and Information System Security (EBISS’09), Wuhan, 2009, pp. 1-5.10.1109/EBISS.2009.5138008
  4. 4. Canali, D., M. Cova, G. Vigna, C. Kruegel. Prophiler: A Fast Filter for the Large-Scale Detection of Malicious Web Pages. – In: Proc. of 20th International Conference on World Wide Web (WWW’11), Hyderabad, India, 2011, pp. 197-206.
  5. 5. Eshete, B., A. Villafiorita, K. Weldemariam. BINSPECT Holistic Analysis and Detection of Malicious Web Pages. – In: Proc. of 8th International ICST Conference, SecureComm, Padua, Italy, 2012, pp. 149-166.10.1007/978-3-642-36883-7_10
  6. 6. Patil, D. R., J. B. Patil. Malicious Web Pages Detection Using Static Analysis of URLs, – International Journal of Information Security and Cybercrime, Vol. 5, 2016, Issue 2, pp. 31-50.10.19107/IJISC.2016.02.06
  7. 7. Patil, D. R., J. B. Patil. Detection of Malicious JavaScript Code in Web Pages. – Indian Journal of Science and Technology, Vol. 10, 2017, No 19, pp. 1-12.10.17485/ijst/2017/v10i19/114828
  8. 8. Choi, H., B. B. Zhu, H. Lee. Detecting Malicious Web Links an Identifying Their Attack Types. – In: Proc. of 2nd USENIX Conference on Web Application Development (WebApps’11), USENIX Association Berkeley, CA, USA, 2011, pp. 1-12.
  9. 9. Le, V. L., I. Welch, X. Gao, P. Komisarczuk. Two-Stage Classification Model to Detect Malicious Web Pages. – In: Proc. of IEEE International Conference on Advanced Information Network.ing and Applications, Biopolis, 2011, pp. 113-120.10.1109/AINA.2011.71
  10. 10. Basnet, R. B., A. H. Sung. Classifying Phishing Emails Using Confidence-Weighted Linear Classifiers. – In: Proc. of International Conference on Information Security and Artificial Intelligence, 2010.
  11. 11. Ma, J., L. K. Saul, S. Savage, G. M. Voelker. Learning to Detect Malicious URLs. – ACM Transactions on Intelligent Systems and Technology, Vol. 2, 2011, No 3, Article 30, pp. 30(1)-30(24). http://doi.acm.org/10.1145/1961189.196120210.1145/1961189.1961202
  12. 12. Garera, S., N. Provos, M. Chew, A. D. Rubin. A Framework for Detection and Measurement of Phishing Attacks. – In: Proc. of 2007 ACM Workshop on Recurring Malcode, 2007, pp. 1-8.10.1145/1314389.1314391
  13. 13. Selenium WebDriver 2.39. Last accessed on 25th December 2016. http://www.seleniumhq.org/projects/webdriver/
  14. 14. Canali, D., M. Cova, G. Vigna, C. Kruegel. Prophiler: A Fast Filter for the Large-Scale Detection of Malicious Web Pages. – In: Proc. of 20th International Conference on World Wide Web (WWW’11), Hyderabad, India, 2011, pp. 197-206.10.1145/1963405.1963436
  15. 15. Wang, T., S. Yu, B. Xie. Novel Framework for Learning to Detect Malicious Web Pages. – In: Proc. of International Forum on Information Technology and Applications (IFITA’10), Kunming, 2010, pp. 353-357.10.1109/IFITA.2010.173
  16. 16. Cova, M., C. Kruegel, G. Vigna. Detection and Analysis of Drive-by-Download Attacks and Malicious JavaScript Code. – In: Proc. of International World Wide Web Conference Committee (IW3C2), Raleigh, North Carolina, USA, 2010.10.1145/1772690.1772720
  17. 17. Ma, J., L. Lawrence, K. Saul, S. Savage, G. M. Voelker. Beyond Blacklists: Learning to Detect Malicious Websites from Suspicious URLs. – In: Proc. of 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09), NY, USA, 2009, pp. 1245-1254.10.1145/1557019.1557153
  18. 18. Liu, H., X. Pan, Z. Qu. Learning Based Malicious Web Sites Detection Using Suspicious URLs. Last accessed January 2016. http://users.eecs.northwestern.edu/~hlc720/349/HTXPZYQ.pdf/
  19. 19. Zhang, Y., J. Hong, L. Cranor. CANTINA: A Content-Based Approach to Detecting Phishing Web Sites. – In: Proc. of International World Wide Web Conference Committee (IW3C2), Banff, Alberta, Canada, 2007, pp. 639-648.10.1145/1242572.1242659
  20. 20. Verma, R., A. Das. What’s in a URL: Fast Feature Extraction and Malicious URL Detection. – In: Proc. of 3rd International Workshop on Security and Privacy Analytics, 2017, pp. 55-63.10.1145/3041008.3041016
  21. 21. Knuth, D. E., J. H. Morris, V. R. Pratt. Fast Pattern Matching in Strings. – In: SIAM Journal on Computing, Vol. 6, 1977, No 2, pp. 323-350.10.1137/0206024
  22. 22. Basnet, R., S. Mukkamala, A. H. Sung. Detection of Phishing Attacks: A Machine Learning Approach. – Soft Computing Applications in Industry, Vol. 226, 2008, pp. 373-383.10.1007/978-3-540-77465-5_19
  23. 23. Marchal, S., K. Saari, N. Singhy, N. Asokan. Know Your Phish: Novel Techniques for Detecting Phishing Sites and Their Targets. – In: Proc. of IEEE 36th International Conference on Distributed Computing Systems (ICDCS’16), 2016, pp. 323-333.10.1109/ICDCS.2016.10
  24. 24. Nepali, R. K., Y. Wang. You Look Suspicious!!: Leveraging Visible Attributes to Classify Malicious Short Urls on Twitter. – In: Proc. of 49th Hawaii International Conference in System Sciences (HICSS’16), 2016, pp. 2648-2655.10.1109/HICSS.2016.332
  25. 25. Weka 3: Data Mining Software in Java. Last accessed December 2016. http://www.cs.waikato.ac.nz/ml/weka
  26. 26. EnsembleVote Classifier. Last accessed on 25th January 2017. http://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/
  27. 27. How to Use Ensemble Machine Learning Algorithms in Weka. Last accessed on 25th January 2017. http://machinelearningmastery.com/use-ensemble-machine-learning-algorithms-weka/
  28. 28. Alexa: Alexa Top 500 Global Websites. Last accessed on November 2016. http://www.alexa.com/topsites/
  29. 29. PhishTank: Join the Fight against Phishing. Last accessed on November 2016. https://www.phishtank.com/
  30. 30. Malware Domain List. Last accessed on December 2016. http://www.malwaredomainlist.com/formus/index.php?topic=3270.0/
  31. 31. Spam Domain Blacklist (Filtered by jwSpamSpy). Last accessed on December 2016. http://www.jowein.de/sw/blacklist.htm/
  32. 32. Basic Evaluation Measures from the Confusion Matrix. Last accessed on January 2017. https://classeval.wordpress.com/introduction/basic-evaluation-measures/
  33. 33. VirusTotal Public API v2.0. Last accessed on January 2017. http://www.virustotal.com/en/documentation/public-api/
  34. 34. VirusTotal Public API v2.0 Client Implementation in Java. Last accessed on January 2017. https://vighnesh.me/virustotal/
  35. 35. Quinlan, J. R. Induction of Decision Trees. – Machine Learning, Vol. 1, 1986, No 1, pp. 81-106. http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html10.1007/BF00116251
  36. 36. Breiman, L., J. H. Friedman, R. A. Olshen, C. J. Stone. Classification and Regression Trees. Belmont, California, Wadsworth International Group, 1984.
  37. 37. Breiman, L. Random Forests. – Machine Learning, Vol. 45, 2001, No 1, pp. 5-32.10.1023/A:1010933404324
  38. 38. Zhao, Y., Y. Zhang. Comparison of Decision Tree Methods for Finding Active Objects. – Advances in Space Research, Vol. 41, 2008, No 12, pp. 1955-1959.10.1016/j.asr.2007.07.020
  39. 39. Freund, Y., L. Mason. The Alternating Decision Tree Learning Algorithm. – In: Proc. of International Conference on Machine Learning, Vol. 99, 1999, pp. 124-133.
  40. 40. REPTree. Last accessed on November 2016.
DOI: https://doi.org/10.2478/cait-2018-0002 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 11 - 29
Submitted on: Oct 23, 2017
Accepted on: Jan 23, 2018
Published on: Mar 30, 2018
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Dharmaraj R. Patil, J. B. Patil, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.