Have a personal or library account? Click to login
Experimental Demonstration Of The Fixed-Point Sparse Coding Performance Cover

Experimental Demonstration Of The Fixed-Point Sparse Coding Performance

Open Access
|Dec 2014

References

  1. 1. Hinton, G., S. Osindero, Y. T h e. A Fast Learning Algorithm for Deep Belief Nets. - Neural Computation, Vol. 18, 2006, No 7, 1527-1554.10.1162/neco.2006.18.7.1527
  2. 2. Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, P. Manzagol. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. - The Journal of Machine Learning Research, Vol. 11, 2010, 3371-3408.
  3. 3. Lee, H., C. Ekanadham, A. Ng. Sparse Deep Belief Net Model for Visual Area V2. - Advances in Neural Information Processing Systems, Vol. 20, 2008, 873-880.
  4. 4. Nasse, F., C. Thurau, G. Fink. Face Detection Using Gpu-Based Convolutional Neural Networks. - Computer Analysis of Images and Patterns, 2009, 83-90.10.1007/978-3-642-03767-2_10
  5. 5. Le, Q., R. Monga, M. Devin, G. Corrado, K. Chen, M. Ranzato, J. Dean, A. Ng. Building High-Level Features Using Large Scale Unsupervised Learning. - ArXiv Preprint ArXiv:1112.6209, 2011.
  6. 6. Raina, R., A. Madhavan, A. Ng. Large-Scale Deep Unsupervised Learning Using Graphics Processors. - In: Proc. of 26th Annual International Conference on Machine Learning, Vol. 382, ACM, 2009, 873-880.10.1145/1553374.1553486
  7. 7. Ly, D., P. Chow. A Multi-fpga Architecture for Stochastic Restricted Boltzmann Machines, in Field Programmable Logic and Applications. 2009. FPL 2009. - In: International Conference on. IEEE, 2009, 168-173.
  8. 8. Chen, Tianshi, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, Olivier Temam. DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning. - In: Proc. of 19th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’14), 2014.
  9. 9. Savich, A., M. Moussa, S. Areibi. The Impact of Arithmetic Representation on Implementing mlp-bp on fpgas: A Study. - IEEE Transactions on Neural Networks, Vol. 18, 2007, No 1, 240-252.10.1109/TNN.2006.883002
  10. 10. Draghici, S. On the Capabilities of Neural Networks Using Limited Precision Weights. - Neural Networks, Vol. 15, 2002, No 3, 395-414.10.1016/S0893-6080(02)00032-1
  11. 11. Savich, A., M. Moussa. Resource Efficient Arithmetic Effects on rbm Neural Network Solution Quality Using mnist. - In: International Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico, 30 November - 2 December 2011, 35-40.10.1109/ReConFig.2011.79
  12. 12. Jiang, Jingfei, Rongdong Hu, et al. Accuracy Evaluation of Deep Belief Networks with Fixed-Point Arithmetic. - Computer Modelling & New Technologies, Vol. 6, 2014.
  13. 13. Kim, S., P. McMahon, K. Olukotun. A Large-Scale Architecture for Restricted Boltzmann Machines. - In: Proc. of 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines, Charlotte, North Carolina, 2-4 May 2010, 201-208.10.1109/FCCM.2010.38
  14. 14. Le, Ly D., P. Chow. High-Performance Reconfigurable Hardware Architecture for Restricted Boltzmann Machines. - IEEE Transactions on Neural Networks, Vol. 21, 2010, No 11, 1780-1792.10.1109/TNN.2010.207348120858578
  15. 15. Lee, H., A. Battle, R. Raina et al. Efficient Sparse Coding Algorithms. - Advances in Neural Information Processing Systems, 2006, 801-808.
  16. 16. Hosmer, JrD. W., S. Lemeshow. Applied Logistic Regression. John Wiley & Sons, 2004.10.1002/0470011815.b2a10030
DOI: https://doi.org/10.2478/cait-2014-0042 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 40 - 50
Published on: Dec 30, 2014
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Jingfei Jiang, Rongdong Hu, Fei Zhang, Yong Dou, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.