Have a personal or library account? Click to login
Benchmark of Different Gradient Descents in OCR Cover
Open Access
|Jul 2014

References

  1. 1. Broumandnia, A., J. Shanbehzadeh. Fast Zernike Wavelet Moments for Farsi Character Recognition. - Image and Vision Computing, Vol. 25, 2007, 717-726.10.1016/j.imavis.2006.05.014
  2. 2. Morita, M. E., E. Lethelier, A. E. Yacoubi, F. Bortolozzi, R. Sabourin, P. Pontifícia. Recognition of Handwritten Dates on Bankchecks Using an HMM Approach. - In: 13th Brazilian Symposium on Computer Graphics and Image Processing, Gramado, Brazil, 2000.
  3. 3. Pan, X., X. Ye, S. Zhang. A Hybrid Method for Robust Car Plate Character Recognition. -Engineering Applications of Artificial Intelligence, Vol. 18, 2005, No 8, 963-972.10.1016/j.engappai.2005.03.011
  4. 4. AI-A l a w i, R. A Hybrid w-Tuple Neuro-Fuzzy Classifier for Handwritten Numerals Recognition. - In: IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 2004.
  5. 5. Amin, A. Recognition of Printed Arabic Text Based on Global Features and Decision Tree Learning Techniques. - Pattern Recognition, Vol. 33, 2000, No 8, 1309-1323.10.1016/S0031-3203(99)00114-4
  6. 6. N a g ab hushan, P., R. M. P a i. Modified Region Decomposition Method and Optimal Depth Decision Tree in the Recognition of Non-Uniform Sized Characters - An Experimentation with Kannada Characters. - Pattern Recognition Letters, Vol. 20, 1999, No 14, 1467-1475.10.1016/S0167-8655(99)00058-6
  7. 7. C h e o k, A. D., Z. J i a n, E. S. C h n g. Efficient Mobile Phone Chinese Optical Character Recognition Systems by Use of Heuristic Fuzzy Rules and Bigram Markov Language Models. - Applied Soft Computing, Vol. 8, 2008, No 2, 1005-1017.10.1016/j.asoc.2007.02.013
  8. 8. Chi, Z., M. Suters, H. Yan. Handwritten Digit Recognition Using Combined ID3-Derived Fuzzy Rules and Markov Chains. - Pattern Recognition, Vol. 29, 1996, No 11, 1821-1833.10.1016/0031-3203(96)00040-4
  9. 9. Hanmandlua, M., K. R. M. Mohanb, S. Chakrabortyc, S. Goyald. Unconstrained Handwritten Character Recognition Based on Fuzzy Logic. - Pattern Recognition, Vol. 36, 2003, 603-623.10.1016/S0031-3203(02)00069-9
  10. 10. Patil, P. M., T. R. Sontakke. Rotation, Scale and Translation Invariant Handwritten Devanagari Numeral Character Recognition Using General Fuzzy Neural Network. - Pattern Recognition, Vol. 40, 2007, No 7, 2110-2117.10.1016/j.patcog.2006.12.018
  11. 11. Goltsev, A., D. Rachkovskij. Combination of the Assembly Neural Network with a Perceptron for Recognition of Handwritten Digits Arranged in Numeral Strings. - Pattern Recognition, Vol. 38, 2005, No 3, 315-322.10.1016/j.patcog.2004.09.001
  12. 12. Lauer, F., C. Y. Suen, G. Bloch. A Trainable Feature Extractor for Handwritten Digit Recognition. - Pattern Recognition, Vol. 40, 2007, No 6, 1816-1824.10.1016/j.patcog.2006.10.011
  13. 13. Camastra, F. A SVM-Based Cursive Character Recognizer. - Pattern Recognition, Vol. 40, 2007, No 12, 3721-3727.10.1016/j.patcog.2007.03.014
  14. 14. Malon, C., S. Uchida, M. Suzuki. Mathematical Symbol Recognition with Support Vector Machines. - Pattern Recognition Letters, Vol. 29, 2008, No 9, 1326-1332.10.1016/j.patrec.2008.02.005
  15. 15. Amor, N. B., N. E. B. A mara. Multifont Arabic Character Recognition Using Hough Transform and Hidden Markov Models. - In: Fourth International Symposium on Image and Signal Processing and Analysis, Zagreb, Croatia, 2005.10.1109/ISPA.2005.195424
  16. 16. Bunke, H., M. Roth, E. Schukat-Talamazzini. Off-Line Cursive Handwriting Recognition Using Hidden Markov Models. - Pattern Recognition, Vol. 28, 1995, No 1, 399-1413.10.1016/0031-3203(95)00013-P
  17. 17. Khorsheed, M. S. Recognising Handwritten Arabic Manuscripts Using a Single Hidden Markov Model. - Pattern Recognition Letters, Vol. 24, 2003, No 14, 2235-2242.10.1016/S0167-8655(03)00050-3
  18. 18. Theeramunkong, T., C. Wongtapan. Off-Line Isolated Handwritten Thai OCR Using Island-Based Projection with w-Gram Model and Hidden Markov Models. - Information Processing and Management, Vol. 41, 2005, No 1, 139-160.10.1016/j.ipm.2004.04.011
  19. 19. Nagabhushan, P., R. M. Pai. Modified Region Decomposition Method and Optimal Depth Decision Tree in the Recognition of Non-Uniform Sized Characters - An Experimentation with Kannada Characters. - Pattern Recognition Letters, Vol. 20, 1999, No 14, 1467-1475.10.1016/S0167-8655(99)00058-6
  20. 20. Ping, Z., C. Lihui. A Novel Feature Extraction Method and Hybrid Tree Classification for Handwritten Numeral Recognition. - Pattern Recognition Letters, Vol. 23, 2002, No 1-3, 4556.10.1016/S0167-8655(01)00088-5
  21. 21. Oliveira, L. S., F. Bortolozzi, C. Y. Suen. Automatic Recognition of Handwritten Numerical Strings: A Recognition and Verification Strategy. - IEEE Transactions on Pattern Recognition and Machine Intelligence, Vol. 24, 2001, No 11, 1448-1456.10.1109/TPAMI.2002.1046154
  22. 22. Mohiuddin, K. M., J. Mao. A Comprehensive Study of Different Classifiers for HandPrinted Character Recognition. - Pattern Recognition, Practice IV, 1994, 437-448.10.1016/B978-0-444-81892-8.50043-2
  23. 23. Koerich, A. L. Unconstrained Handwritten Character Recognition Using Different Classification Strategies. - In: International Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), 2003.
  24. 24. Kim, H., K. K. Kim, C. Y. Suen. Hybrid Schemes of Homogeneous and Heterogeneous Classifiers for Cursive Word Recognition. - In: Proceedings of Seventh International Workshop on Frontiers in Handwritten Recognition, Amsterdam, 2000, 433-442.
  25. 25. Al-Omari, F. A., O. Al-Jarrah. Handwritten Indian Numerals Recognition System Using Probabilistic Neural Networks. - Advanced Engineering Informatics, Vol. 18, 2004, No 1, 916.10.1016/j.aei.2004.02.001
  26. 26. Pal, U., B. B. Chaudhuri. Indian Script Character Recognition: A Survey. - Pattern Recognition, Vol. 37, 2004, No 9, 1887-1899.10.1016/j.patcog.2004.02.003
  27. 27. Hung, K.-Y., R. W. P. L uk, D. S. Yeung, K. F. L. Chung, W. Shu. A Multiple Classifier Approach to Detect Chinese Character Recognition Errors. - Pattern Recognition, Vol. 38, 2005, No 5, 723-738.10.1016/j.patcog.2004.09.004
  28. 28. Li, Y.-X., C. L. Tan, X. Ding, C. Liu. Contextual Post-Processing Based on the Confusion Matrix in Offline Handwritten Chinese Script Recognition. - Pattern Recognition, Vol. 37, 2004, No 9, 1901-1912.10.1016/j.patcog.2004.03.002
  29. 29. Su, T.-H., T.-W. Zhang, D.-J. Guan, H.-J. Huang. Off-Line Recognition of Realistic Chinese Handwriting Using Segmentation-Free Strategy. - Pattern Recognition, Vol. 42, 2009, No 1, 167-182.10.1016/j.patcog.2008.05.012
  30. 30. Zhao, S., Z. Chi, P. Shi, H. Yan. Two-Stage Segmentation of Unconstrained Handwritten Chinese Characters. - Pattern Recognition, Vol. 36, 2003, No 1, 145-156.10.1016/S0031-3203(02)00041-9
  31. 31. Itoh, N. Japanese Language Model Based on Bigrams and Its Application to On-Line Character Recognition. - Pattern Recognition, Vol. 28, 1995, No 2, 135-141.10.1016/0031-3203(94)E0053-N
  32. 32. Kimura, F., T. Wakabayashi, S. Tsuruoka, Y. Miyake. Improvement of Handwritten Japanese Character Recognition Using Weighted Direction Code Histogram. -Pattern Recognition, Vol. 30, 1997, No 8, 1329-1337.10.1016/S0031-3203(96)00153-7
  33. 33. Srihari, S. N., T. Hong, G. Srikantan. Machine-Printed Japanese Document Recognition. - Pattern Recognition, Vol. 30, 1997, No 8, 1301-1313.10.1016/S0031-3203(96)00168-9
  34. 34. Al-Muhtaseb, H. A., S. A. Mahmo ud, R. S. Qahwaj i. Recognition of Off-Line Printed Arabic Text Using Hidden Markov Models. - Signal Processing, Vol. 88, 2008, No 12, 2902-2912.10.1016/j.sigpro.2008.06.013
  35. 35. Azmi, R., E. Kabir. A New Segmentation Technique for Omnifont Farsi Text. - Pattern Recognition Letters, Vol. 22, 2001, 97-104.10.1016/S0167-8655(00)00086-6
  36. 36. Dehghan, M., K. Faez, M. Ahmadi, M. Shridha r. Unconstrained Farsi Handwritten Word Recognition Using Fuzzy Vector Quantization and Hidden Markov Models. - Pattern Recognition Letters, 2001, 209-214.10.1016/S0167-8655(00)00090-8
  37. 37. Mozaffari, S., K. Faez, V. Märgner, H. El-Abed. Lexicon Reduction Using Dots for Off-Line Farsi/Arabic Handwritten Word Recognition. - Pattern Recognition Letters, Vol. 29, 2008, No 6, 724-734.10.1016/j.patrec.2007.11.009
  38. 38. Solimanpour, F., J. Sadri, C. Y. Suen. Standard Databases for Recognition of Handwritten Digits, Numerical Strings, Legal Amounts, Letters and Dates in Farsi Language. - In: 10th Int'l Workshop on Frontiers of Handwriting Recognition, La Baule, France, 2006.
  39. 39. Ziaratban, M., K. Faez, F. Faradji. Language-Based Feature Extraction Using Template-Matching in Farsi/Arabic Handwritten Numeral Recognition. - In: 9th Int'l Conference on Document Analysis and Recognition, Curitiba, Brazil, 2007.10.1109/ICDAR.2007.4405576
  40. 40. B lumen stein, M., X. Y. Liu, B. Verm a. A Modified Direction Feature for Cursive Character Recognition. - In: IEEE International Joint Conference on Neural Networks, Vol. 4, 2000, 2983-2987.
  41. 41. Fitzgerald, J. A., F. Geiselbrechtinger, T. Kechadi. Application of Fuzzy Logic to Online Recognition of Handwritten Symbols. - In: Proceedings of Ninth International Workshop on Frontiers in Handwritten Recognition, 2004, 395-400.
  42. 42. Fletcher, R., C. M. Reeves. Function Minimization by Conjugate Gradients. - Computer Journal, Vol. 7, 2004, 149-154.10.1093/comjnl/7.2.149
  43. 43. Hagan, M. T., H. B. Demuth, M. H. Be ale. Neural Network Design. Boston, MA, PWS Publishing, 1996.
  44. 44. Powell, M. J. D. Restart Procedures for the Conjugate Gradient Method. - Mathematical Programming, Vol. 12, 1977, 241-254.10.1007/BF01593790
  45. 45. Beale, E. M. L. A Derivation of Conjugate Gradients. - In: F. A. Lootsma, Ed. Numerical Methods for Nonlinear Optimization. London, Academic Press, 1972.
  46. 46. Mo l l e r, M. F. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. - Neural Networks, Vol. 6, 1993, 525-533.10.1016/S0893-6080(05)80056-5
  47. 47. Battiti, R. First and Second Order Methods for Learning: Between Steepest Descent and Newton's Method. - Neural Computation, Vol. 2, 1992, No 4, 141-166.10.1162/neco.1992.4.2.141
  48. 48. Sexton, A. P., V. Sorge. Database-Driven Mathematical Character Recognition, Graphics Recognition, Algorithms and Applications (GREC). - In: Lecture Notes in Computer Science (LNCS), Hong Kong, 2006, 206-217.10.1007/11767978_20
  49. 49. Riedmiller, M., H. Braun. A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. - In: Proceedings of IEEE International Conference on Neural Networks, 1993.
  50. 50. De Campos, T. E., B. R. Babu, M. Varma. Character Recognition in Natural Images. - In: Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal, February 2009.
DOI: https://doi.org/10.2478/cait-2014-0024 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 114 - 126
Published on: Jul 15, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Marjan Kuchaki Rafsanjani, Masoud Pourshaban, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.