Have a personal or library account? Click to login
An optimized scheduling algorithm on a cloud workflow using a discrete particle swarm Cover

An optimized scheduling algorithm on a cloud workflow using a discrete particle swarm

Open Access
|Apr 2014

References

  1. 1. Shang, S. F., J. L. Jian g, W. M. Zheng. CWFlow: A Cloud-Based Worflow Framework with Adaptive Resource Utilization. - J. Tsinghua Univ (Sci & Tech), Vol. 53, 2013, No 3, 415-420.
  2. 2. Chakrabarti, A., A. Damodaran, S. Sengupta. Grid Computing Security: A Taxonomy. -IEEE Security & Privacy, Vol. 6, 2008, No 1, 44-51.10.1109/MSP.2008.12
  3. 3. Kołodziej, J., F. Xhafa. Integration of Task Abortion and Security Requirements in GABased Meta-Heuristics for Independent Batch Grid Scheduling. - Computers and Mathematics with Applications, Vol. 63, 2012, No 2, 350-364.10.1016/j.camwa.2011.07.038
  4. 4. Wu, C., R. Sun. An Integrated Security-Aware Job Scheduling Strategy for Large-Scale Computational Grids. - Future Generation Computer Systems, Vol. 26, 2010, No 2, 198-206.10.1016/j.future.2009.08.004
  5. 5. Liu, H., A. Abraham, V. Snášel et al. Swarm Scheduling Approaches for Work-Flow Applications with Security Constraints in Distributed Data-Intensive Computing Environments. -Information Sciences, Vol. 192, 2012, No 6, 228-243.10.1016/j.ins.2011.12.032
  6. 6. Zhu, H., Y. P. Wang. Integration of Security Grid Dependent Tasks Scheduling Double- Objective Optimization Model and Algorithm. - Journal of Software, Vol. 22, 2011, No 11, 2729-2748.10.3724/SP.J.1001.2011.03900
  7. 7. Wu, Z., X. Liu, Z. Nietal. A Market-Oriented Hierarchical Scheduling Strategy in Cloud Workflow Systems. - J. Supercomput., Vol. 63, 2013, No 1, 256-293.10.1007/s11227-011-0578-4
  8. 8. Li, J., Q. J. Huang, Y. Y. Liuet al. A Task Scheduling Algorithm for Large Graph Processing Based on Particle Swarm Optimization in Cloud Computing. - Journal of Xi’an Jiaotong University, Vol. 46, 2012, No 12, 116-122.
  9. 9. Sun, D. W., G. R. Chang, F. Y. Li et al. Optimizing Multi-Dimensional Qo S Cloud Resource Scheduling by Immune Clonal with Preference. - Acta Electronica Sinica, Vol. 39, 2011, No 8, 1824-1831.
  10. 10. Li, D., C. Liu. A New Cognitive Model: Cloud Model. - Int. J. of Inteligent Systems, Vol. 24, 2009, No 3, 357-375.10.1002/int.20340
  11. 11. Salman, A., I. Ahmad, S. Al-Madani. Particle Swarm Optimization for Task Assignment Problem. - Microprocessors and Microsystems, Vol. 26, 2002, No 8, 363-371.10.1016/S0141-9331(02)00053-4
  12. 12. Calheiros, R. N., R. Ranjan, A. Beloglazov, et al. Cloud Sim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms. - Software: Practice and Experience, Vol. 41, 2011, No 1, 23-50.
  13. 13. Parsopoulos, K. E., M. N. Vrahatis. Recent Approaches to Global Optimization Problems Through Particle Swarm Optimization. - Natural Computing, Vol. 1, 2002, No 2-3, 235-306.
DOI: https://doi.org/10.2478/cait-2014-0003 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 25 - 39
Published on: Apr 9, 2014
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Cao Jianfang, Chen Junjie, Zhao Qingshan, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.