Have a personal or library account? Click to login
An Efficient Data Structure for Representing Trilateral/Quadrilateral Subdivision Surfaces Cover

An Efficient Data Structure for Representing Trilateral/Quadrilateral Subdivision Surfaces

Open Access
|Sep 2013

References

  1. 1. Catmull, E., J. Clark. Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes. - Computer-Aided Design, Vol. 10, 1978, No 6, 350-355.10.1016/0010-4485(78)90110-0
  2. 2. Loop, C. Smooth Subdivision Surfaces Based on Triangles. M. S. Thesis, Dept. Mathematics, University of Utah, Utah, USA, 1987.
  3. 3. Kraemer, P., D. Cazier, D. Bechmann. Extension of Half-Edges for the Representation of Multiresolution Subdivision Surfaces. - The Visual Computer, Vol. 25, 2009, No 2, 149-163.10.1007/s00371-008-0211-6
  4. 4. Campagna, S., L. Kobbelt, H. P. Seidel. Directed Edges-A Scalable Representation for Triangle Meshes. - Journal of Graphics Tools, Vol. 3, 1998, No 4, 1-11.10.1080/10867651.1998.10487494
  5. 5. Weiler, K. Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments. - IEEE Computer Graphics and Applications, Vol. 5, 1985, No 1, 21-24.10.1109/MCG.1985.276271
  6. 6. Pulli, K., M. Segal. Fast Rendering of Subdivision Surfaces. - In: Proc. of the Eurographics Workshop on Rendering Techniques, Porto, Portugal, 1996, 61-70.10.1007/978-3-7091-7484-5_7
  7. 7. Ou, Shiqi, Hongzan Bin. A Compact Data Structure for Implementing Loop Subdivision. - International Journal of Advanced Manufacturing Technology, Vol. 29, 2006, No 11, 1151-1158.10.1007/s00170-005-0012-2
  8. 8. Settgast, V., K. Müller, C. Fünfzig, D. W. Fellner. Adaptive Tesselation of Subdivision Surfaces. - Computers and Graphics, Vol. 28, 2004, No 1, 73-78.10.1016/j.cag.2003.10.006
  9. 9. Doo, D., M. Sabin. Behaviour of Recursive Division Surfaces Near Extraordinary Points. - Computer-Aided Design, Vol. 10, 1978, No 6, 356-360.10.1016/0010-4485(78)90111-2
  10. 10. Stam, J., C. Loop. Quad/Triangle Subdivision. - Computer Graphics Forum, Vol. 22, 2002, No 1, 79-85.10.1111/1467-8659.t01-2-00647
  11. 11. Dyn, N., D. Levine, J. A. Gregory. A Butterfly Subdivision Scheme for Surface Interpolation with Tension Control. - ACM Transactions on Graphics, Vol. 9, 1990, No 2, 160-169.10.1145/78956.78958
  12. 12. Hoppe, H. et al. Piecewise Smooth Surface Reconstruction. - In Proc. of the 21st Annu. Conf. on Computer Graphics and Interactive Techniques, Orlando, Florida, 1994, 295-302. 10.1145/192161.192233
DOI: https://doi.org/10.2478/cait-2013-0023 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 26 - 40
Published on: Sep 20, 2013
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Jianning Zhu, Minjie Wang, Zhaocheng Wei, Bin Cao, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons License.