Have a personal or library account? Click to login
Fixed Point Theorem for Converse Commuting Mapping in Symmetric Spaces Cover

Fixed Point Theorem for Converse Commuting Mapping in Symmetric Spaces

By: T. K. Samanta and  Sumit Mohinta  
Open Access
|Sep 2013

References

  1. 1. George, A., P. Veeramani. On Some Result in Fuzzy Metric Spaces. - Fuzzy Sets and Systems, Vol. 64, 1994, 395-399.10.1016/0165-0114(94)90162-7
  2. 2. Jungck, G. Common Fixed Point for Non-Continuous Non-Self Mappings ona Non-Numeric Spaces. - Far East J. Math. Sci., Vol. 4, 1996, No 2, p. 199.
  3. 3. Jungck, G., B. E. Rhoades. Fixed Point Theorems for Occasionally Weakly Compatible Mappings. - Fixed Point Theorem, Vol. 7, 2006, No 2, p. 287.
  4. 4. Pathak, H. K., R. K. Verma. Common Fixed Point Theorem for Occasionally Converse Commuting Mapping in Symmetric Space. - Kathmandu University Journal of Science, Engineering and Technology, Vol. 7, September 2011, No 1, 56-62.10.3126/kuset.v7i1.5422
  5. 5. Pathak, H. K., R. K. Verma. Integral Type Contractive Condition for Converse Commuting Mappings. - Int. Journal of Math. Analysis, Vol. 3, 2009, 1183-1190.
  6. 6. Liu, Qui-kuan, Xin-qi Hu. Some New Common Fixed Point Theorems for Converse Commuting Multivalued Mappings in Symmetric Spaces with Applications. - Nonlinear Analysis Forum, Vol. 10, 2005, No 1, 97-104.
  7. 7. Samanta, T. K., S. Mohinta. Common Fixed Point Theorems for Single and Set-Valued Maps in Non-Archimedean Fuzzy Metric Spaces. - Global Journal of Science Frontier Research Mathematics and Decision Sciences, Vol. 12, June 2012, Issue 6, Version 1.0.
  8. 8. Samanta, T. K., S. Mohinta. Well-Posedness of Common Fixed Point Theorems for Three and Four Mappings under Strict Contractive Conditions in Fuzzy Metric Spaces. - Vietnam Journal of Mathematics, Vol. 39, 2011, No 2, 237-249.
  9. 9. Samanta, T. K., S. Mohinta. Common Fixed Point Theorem for Pair of Subcompatible Maps in Fuzzy Metric Space. - Advances in Fuzzy Mathematics, Vol. 6, 2011, No 3, ISSN No 973-533X, 301-312.
  10. 10. Samanta, T. K., S. Mohinta, B. Dinda, S. Roy, J. Ghosh. On Coincidence and Fixed Point Theorems in Fuzzy Symmetric Space. - Journal of Hyperstructures, Vol. 1, 2012, No 1, 74-91.
  11. 11. Samanta, T. K., S. Mohinta. Common Fixed Point Theorems Under Contractive Condition in Fuzzy Symmetric Spaces. Accepted and Article in Press, Annals of Fuzzy Mathematics and Informatics.
  12. 12. Hicks, T. L., B. E. Rhoades. Fixed Point Theory in Symmetric Spaces with Application to Probabilistic Spaces. - Non Linear Analysis, Vol. 36, 1999, 331-344.10.1016/S0362-546X(98)00002-9
  13. 13. Popa, V. A General Fixed Point Theorem for Converse Commuting Multivalued Mappings in Symmetric Space. - Faculty of Science and Mathematics, Univ. of Nis, Serbia, Filomat, Vol. 21, 2007, No 2, 267-271.10.2298/FIL0702267P
  14. 14. Wilson, W. A. On Semi-Metric Spaces. - American Journal of Mathematics, Vol. 53, 1931, No 2, 361-373.10.2307/2370790
  15. 15. Lü, Z. On Common Fixed Points for Converse Commuting Self - Maps ona Metric Spaces. - Acta. Anal. Funct. Appl., Vol. 4, 2002, No 3, 226-228.
  16. 16. Zadeh, L. A. Fuzzy Sets. - Information and Control, Vol. 8, 1965, 338-353. 10.1016/S0019-9958(65)90241-X
DOI: https://doi.org/10.2478/cait-2013-0022 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 15 - 25
Published on: Sep 20, 2013
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 T. K. Samanta, Sumit Mohinta, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons License.