Have a personal or library account? Click to login
Prediction of e-Learning Efficiency by Neural Networks Cover

Prediction of e-Learning Efficiency by Neural Networks

By: Petar Halachev  
Open Access
|Mar 2013

References

  1. 1. John, M. Economic Forecasting Challenges and Neural Network Solutions. Computer Science Dept., Oregon Graduate Institut, USA, 1995.
  2. 2. Hou, Zai-En, Fu-Jian Duan. The Neural Network Method of Economy Forecasting. World Congress on Software Engineering, IEEE, 2009.10.1109/WCSE.2009.397
  3. 3. Leonardo, M. S., R. Ballini. Design a Neural Network for Time Series Financial Forecasting: Accuracy and Robustness Analisys. Instituto de Economia, Universidade Estadual de Campinas, Sao Paulo-Brasil, 2008.
  4. 4. Lykourentzou, I., I. Giannoukos, G. Mpardis, V. Nikolopoulos, V. Loumos. Early and Dynamic Student Achievement Prediction in e-Learning Courses Using Neural Networks. DOI: 10.1002/asi.20970, 2008.10.1002/asi.20970
  5. 5. Lykourentzou, I., I. Giannoukos V. Nikolopoulos,, G. Mpardis, V. Loumos. Dropout Prediction in e-Learning Courses through the Combination of Machine Learning Techniques. School of Electrical and Computer Engineering, National Technical University of Athens, Zographou Campus, 15773 Athens, Greece, 2009.10.1016/j.compedu.2009.05.010
  6. 6. Kasuba, A. EXPERT. Simplified Fuzzy ARTMAPT. Miller Freeman, Inc., 1993.
  7. 7. Baker, B. D., C. E. Richards. A Comparison of Conventional Linear Regression Methods and Neural Networks for Forecasting Educational Spending. 1999.10.1016/S0272-7757(99)00003-5
  8. 8. Zhong, He De, Liu Jing Nan, Zhang Su He. Evaluation of Academic Degrees and Graduate Education Based on Neural Network. - Journal of Chongqing University (Natural Science Edition), 2003.
  9. 9. Kaplan, R., D. Norton. The Balanced Scorecard: Translating Strategy into Action. 2006.
  10. 10. Johnson, K. J. Boosting Performance and Accountability with the BSC. Texas Education Agency, 2003.
  11. 11. Lilian, C. Y.-C. Which Balanced Scorecard to Use. St. Thomas University, 2007.
  12. 12. Purdue University, SSTS: Strategic Plan - Balanced Scorecard. 2009.
  13. 13. Cardoso, M. J. T. P. N. E. A Balanced Scorecard Approach for Strategy-and Quality-Driven Universities. 2005.
  14. 14. Nicola, B. R. K. R. S. SPSS for Psychologists. Published by Palgrave Macmillan, Australia, 2006.
  15. 15. Vundev. Records on Applied Statistics, Vol. 2, 2003.
  16. 16. Edward, J. J. A User's Guide to Principal Components, 2004.
  17. 17. Suikova , S. Т. I. Statistical Study. Publishing House “Luren”, 2000.
  18. 18. S. M. Cross-Validatory Choice and Assessment of Statistical Predictions. 1974.
  19. 19. Cun, Yan Le, J. Denker, S. Solla. Optimal Brain Damage. Advances in Neural Information Processing Systems, 1990.
  20. 20. Cybenko, G. Approximation by Superposition of a Sigmodial Function. 1986.
  21. 21. Funahashi, K.-I. On the Approximate Realization of Continuous Mappings by Neural Networks. 1989.10.1016/0893-6080(89)90003-8
  22. 22. Hartman, K., Kowalski. Layered Neural Networks with Gaussian Hidden Units as Universal Approximations. 1990.10.1162/neco.1990.2.2.210
  23. 23. Haykin, S. Neural Networks: A Comprehensive Foundation. 1994.
  24. 24. Kuruglov, V. V., M. I. Dli, R. Golunov. Fuzzy Logic and Artificial Neural Networks. 2001.
DOI: https://doi.org/10.2478/cait-2012-0015 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 98 - 108
Published on: Mar 16, 2013
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Petar Halachev, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons License.