Have a personal or library account? Click to login
A New Approach for Mammogram Image Classification Using Fractal Properties Cover

A New Approach for Mammogram Image Classification Using Fractal Properties

Open Access
|Mar 2013

References

  1. 1. Kobatake, H., M. Murakami, H. Takeo, S. Nawano. Computerized Detection of Malignant Tumors on Digital Mammograms. - In: IEEE Tran. Medical Imaging, Vol. 18, 1999, No 5, 369-378.10.1109/42.77416410416798
  2. 2. Zhou, X. Q., H. K. Huang, S. L. Lou. Authenticity and Integrity of Digital Mammography Images. - IEEE Trans on Medical Imaging, Vol. 20, 2001, No 8, 784-791. 10.1109/42.93824611513029
  3. 3, Lundahi, T., W. J. Ohley, S. M. Kay, R. Siffert. Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture. - In: IEEE Trans. Med. Imaging, Vol. MI- 5, September 1986.10.1109/TMI.1986.430776418244001
  4. 4. Erkang, C., X. Nianhua, L. Haibin, P. R. Bakic, A. D. A. Maidment, V. Megalooikonomou. Mammographic Image Classification Using Histogram Intersection. - In: IEEE Proc. ISBI’10, 2010, 197-200.
  5. 5. Hassanien, E. A., M. H. Jafar Ali. Rough Set Approach for Classification of Breast Cancer Mammogram Images. - In: Int.Workshop on Fuzzy and App., 2003, 224-231.10.1007/10983652_28
  6. 6. Lúcio, F. A., C. S. C. Aristófanes, A. K. Barros. Diagnosis of Breast Cancer in Digital Mammograms Using Independent Component Analysis and Neural Networks. - LNCS, Vol. 3773, 2005, 460-469.
  7. 7. Arod, T., M. Kurdziel, E. O. D. Sevre, D. A. Yuen. Pattern Recognition Techniques for Automatic Detection of Suspicious-Looking Anomalies in Mammograms. − Comput. Methods Prog. Biomed, 2005, 135-149.10.1016/j.cmpb.2005.03.00915925425
  8. 8. Huai, Li, K. J. R. Liu, S.-C. B. Lo. Fractal Modeling and Segmentation for the Enhancement of Microcalcification in Digital Mammograms. - In: IEEE Trans. Med. Imaging, 1997, 785-798.10.1109/42.6508759533579
  9. 9. Zhang, P., K. Kumar, B. Verma. A Hybrid Classifier for Mass Classification with Different Kinds of Features in Mammography. - LNCS, Vol. 3614, 2005.10.1007/11540007_38
  10. 10. Buciu, I., A. Gacsadi. Directional Features for Automatic Tumor Classification of Mammogram Images. − Biomedical Signal Processing and Control, 2011 (in Press).10.1016/j.bspc.2010.10.003
  11. 11. Dua, S., S. Harpreet, H. W. Thompson. Associative Classification of Mammograms Using Weighted Rules. − Expert Syst. Appl., 2009, 9250-9259.10.1016/j.eswa.2008.12.050277424220160889
  12. 12. Antonie, M.-L., O. R. Zaiane, A. Coman. Application of Data Mining Techniques for Medical Image Classification. - MDM/KDD, 2001, 94-101.
  13. 13. Petroudi, S., T. Kadir, M. Brady. Automatic Classification of Mammographic Parenchymal Patterns: A Statistical Approach. - In: IEEE Proc. EMBS, 2003, 798-801.
  14. 14. Lekshmi, S., K. Revathy, S. R. Prabhakaran Nayar. Galaxy Classification Using Fractal Signature. - A&A, Vol. 405, 2003, 1163-1167.10.1051/0004-6361:20030541
  15. 15. Don, S., K. Revathy. Classifying Remotely Sensed Data Using Fractal Features. - AIPR, USA, 2007, 262-266.10.1109/ICCIMA.2007.175
  16. 16. Heath, M., K. Bowyer, D. Kopans, Jr. P. Kegelmeyer, R. Moore, K. Chang, S. Munishkumaran. Current Status of the Digital Database Screening Mammography. − In: Proceedings of the 4th IWDM, 1997, 457-460.10.1007/978-94-011-5318-8_75
  17. 17. Suckling, J. et al. The Mammographic Image Analysis Society Digital Mammogram Database Exerpta Medica. − International Congress Series, Vol. 1069 1994, 375-378.
  18. 18. American College of Radiology, Illustrated Breast Imaging Reporting and Data System BIRADS. Reston,VA, American College of Radiolog., 1993.
  19. 19. Mandelbrot, B. B. The Fractal Geometry of Nature. San Francisco, CA, W. H. Freeman, 1982.
  20. 20. Yuan, Yan Tang. Wavelet Theory Approach To Pattern Recognition. 2nd Edition. World Scientific.
  21. 21. Douketis, C., W. Zhouhang, T. L. Haslett, M. Moskovits. Fractal Character of Cold-Deposited Silver Films Determined by Low-Temparature Scanning Tunneling Microscopy. - Phys. Rev., Vol. B51, 1995, 11022-11031.10.1103/PhysRevB.51.11022
  22. 22. Espinal, F., T. L. Hunberger, B. Jawerth, T. Kubota. Galaxy Classification Using Fractal Signature. - Opt. Eng., Vol. 37, 1998, p. 166.10.1117/1.601844
  23. 23. Peleg, S., N. J. Hartley, R. Avnird. Multiple Resolution Texture Analysis and Classification. - In: IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI6, 1984, 518-523.10.1109/TPAMI.1984.476755721869220
  24. 24. Zhang, W., K. Doi, M. Giger, R. Nishikawa, R. Schmidt. An Improved Shift- Invariant Artificial Neural Network for Computerized Detection of Clustered Microcalcification in Digital Mammograms. - Med. Phys., Vol. 23, 1996, No 4, 595-601.10.1118/1.5978918860907
  25. 25. White, R. L. Object Classification in Astronomical Images. − In: Statistical Challenges in Modern Astronomy II. Springer, 1997.10.1007/978-1-4612-1968-2_8
  26. 26. Karahaliou, A., S. Skiadopoulos, I. Boniatis, P. Sakellaropoulos, E. Likaki, G. Panayiotakis, L. Costaridou. Texture Analysis of Tissue Surrounding Microcalcifications on Mammograms for Breast Cancer Diagnosis. - The British Journal of Radiology, 2007, 684-656.10.1259/bjr/3041575117621604
DOI: https://doi.org/10.2478/cait-2012-0013 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 69 - 83
Published on: Mar 16, 2013
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 S. Don, Duckwon Chung, K. Revathy, Eunmi Choi, Dugki Min, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons License.