Have a personal or library account? Click to login
First Order Perturbation Bounds of the Discrete-Time LMI-Based H∞ Quadratic Stability Problem for Descriptor Systems Cover

First Order Perturbation Bounds of the Discrete-Time LMI-Based H∞ Quadratic Stability Problem for Descriptor Systems

By: Andrey Yonchev  
Open Access
|Mar 2013

References

  1. 1. Boyd, S., L. El. Ghaoui, F. Feron, V. Balakrishnan. Linear Matrix Inequalities in Systems and Control Theory. Philadelphia, SIAM, 1996.
  2. 2. Yonchev, A., M. Konstantinov, P. Petkov. Linear Matrix Inequalities in Control Theory. ISBN 954:9526-32-1. Sofia, Demetra, 2005 (in Bulgarian).
  3. 3. Nestorov, Y., P. Gahinet. Interior-Point Polynomial Algorithms in Convex Programming. PA, Philadelphia, SIAM, 1994.10.1137/1.9781611970791
  4. 4. Gahinet, P., A. Nemirovski, A. Laub, M. Chilali. LMI Control Toolbox for Use with MATLAB. The MathWorks, Inc., 2000.
  5. 5. Paucelle, D., D. Henrion, Y. Labit, K. Taitz. User's Guide for SeDuMi Interface 1.04. LAAS-CNRS, 2002.
  6. 6. Doyle, J. C., K. Glover, P. P. Khargonekar, B. A. Francis. State-Space Solutions to Standard H2 and H„ Control Problems. - IEEE Transactions on Automatic Control, 34, 1989, 831-847.10.1109/9.29425
  7. 7. Peterson, I. R., B. D. O. Anderson, E. A. Jonkheere. A First Principles Solution to the Non-Singular H„ Control Problem. - Int. J. Robust Non. Contr., 1, 1991, 171-185.10.1002/rnc.4590010304
  8. 8. Dullerud, G. E., F. Paganini. A Course in Robust Control Theory. - In: New York, Springer-Verlag, 2000.10.1007/978-1-4757-3290-0
  9. 9. Gahinet, P., P. Apkarian. A Linear Matrix Inequality Approach to H„ Control. - Int. J. Robust and Nonlinear Control, 4, 1994, 421-448.10.1002/rnc.4590040403
  10. 10. Dai, L . Singular Control Systems. Berlin, Springer-Verlag, 1989.10.1007/BFb0002475
  11. 11. Rehm, A. Control of Descriptor Systems: An LMI Approach. PhD Dissertation, 2002.
  12. 12. Boom, T., T. Back x. Lecture Notes for Model Predictive Control Disc Course. Winter, 1999.
  13. 13. Mehrman, V. The Autonomous Linear Quadratic Control Problem. - In: Lecture Notes in Control and Information Sciences. Berlin, Springer-Verlag, 1991.10.1007/BFb0039443
  14. 14. Lewis, F. A Survey of Linear Singular Systems. - Circuits, Syst., Signal Process., Vol. 5, 1886, No 1, 3-36.10.1007/BF01600184
  15. 15. Yonchev, A., R. Findeisen, C. Ebenbauer, F. Allgower. Model Predictive Control of Linear Continuous Time Singular Systems Subject to Input Constraints. - In: 43rd IEEE Conference on Decision and Control. 14-17 December 2004, Atlantis, Paradise Island, Bahamas.10.1109/CDC.2004.1430349
  16. 16. Bender, D., A. Laub. The Linear-Quadratic Optimal Regulator for Descriptor Systems. - IEEE Trans. Automat. Control, Vol. 32, 1987, No 8, 287-291.10.1109/TAC.1987.1104694
  17. 17. Cobb, D. Descriptor Variable Systems and Optimal State Regulation. - IEEE Trans. Aut. Control, Vol. 28, 1983, No 6, 601-611.10.1109/TAC.1983.1103283
  18. 18. Brenan, K., S. Campbel, L. Petzold. Numerical Solution of Initial Value Problems in Differential -Algebraic Equations. Classics in Applied Mathematics. Philadelphia, SIAM, 1996.10.1137/1.9781611971224
  19. 19. Maly, T., L. Petzold. Numerical Methods and Software for Sensitivity Analysis of Differential-Algebraic Systems. - Appl. Num. Math., Vol. 20, 1996, 57-79.10.1016/0168-9274(95)00117-4
  20. 20. Yonchev, A. Linear Perturbation Bounds of the Continuous-Time LMI Based Hm Quadratic Stability Problem for Descriptor Systems. - Cybernetics and Information Technologies, Vol. 11, 2011, No 4, 31-40.
DOI: https://doi.org/10.2478/cait-2012-0001 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 3 - 12
Published on: Mar 13, 2013
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Andrey Yonchev, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons License.