References
- J. B. McDevitt, L. L. Levy Jr, and G. S. Deiwert, Transonic flow about a thick circular-arc airfoil, AIAA Journal, vol. 14, no. 5, pp. 606–613, 1976.
- H. Tijdeman and R. Seebass, Transonic flow past oscillating airfoils, Annual Review of Fluid Mechanics, vol. 12, no. 1, pp. 181–222, 1980.
- B. Rasuo, An experimental and theoretical study of transonic flow about the NACA 0012 airfoil, in 24th AIAA Applied Aerodynamics Conference, p. 3877, 2006.
- V. Hermes, I. Klioutchnikov, and H. Olivier, Numerical investigation of unsteady wave phenomena for transonic airfoil flow, Aerospace Science and Technology, vol. 25, no. 1, pp. 224–233, 2013.
- A. Jameson, Transonic flow calculations for aircraft, in Numerical Methods in Fluid Dynamics: Lectures given at the 3rd 1983 Session of the Centro Internationale Matematico Estivo (CIME) held at Como, Italy, July 7–15, 1983, pp. 156–242, Springer, 2006.
- R. Paciorri, A. Bonfiglioli, and A. Assonitis, Features of “fishtail” shock interaction in transonic flows on a NACA0012 profile, AIAA Journal, 2024.
- R. Paciorri, A. Bonfiglioli, and A. Assonitis, The transonic flow past a NACA0012 and the von Neumann paradox, in AIAA Aviation 2022 Forum, Paper no. 2022–3990, 2022.
- Shell Film Unit, High speed flight: Part 2 - transonic flight. YouTube, 1959. uploaded by National Aerospace Library.
- J. Von Neumann, Theory of shock waves, tech. rep., Institute for Advanced Study Princeton, NJ, 1943. also in: A. H. Taub (ed.), John von Neumann Collected Works, vol. VI: Theory of Games, Astrophysics, Hydrodynamics and Meteorology. Pergamon, 1963.
- A. H. Taub, ed., The Collected Works of John von Neumann: Volume VI: Theory of Games, Astrophysics, Hydrodynamics and Meteorology. Pergamon Press, 1963.
- C. J. Chapman, High speed flow. Cambridge University Press, 2000.
- G. Birkhoff, Hydrodynamics: A study in logic, fact, and similitude. Princeton University Press, 1950.
- P. Colella and L. F. Henderson, The von Neumann paradox for the diffraction of weak shock waves, Journal of Fluid Mechanics, vol. 213, pp. 71–94, 1990.
- A. R. Zakharian, M. Brio, J. K. Hunter, and G. M. Webb, The von Neumann paradox in weak shock reflection, Journal of Fluid Mechanics, vol. 422, pp. 193–205, 2000.
- K. G. Guderley, Considerations of the structure of mixed subsonic-supersonic flow patterns, Air Material Command Tech. Report, F-TR-2168-ND, ATI No. 22780, U.S. Wright-Patterson Air Force Base, GS-AAF-Wright Field 39, Dayton, Ohio, oct 1947.
- E. I. Vasilev, T. Elperin, and G. Ben-Dor, Analytical reconsideration of the von Neumann paradox in the reflection of a shock wave over a wedge, Physics of Fluids, vol. 20, no. 4, p. 046101, 2008.
- M. Ivanov, G. Shoev, D. Khotyanovsky, Y. Bondar, and A. Kudryavtsev, Supersonic patches in steady irregular reflection of weak shock waves, in 28th International Symposium on Shock Waves (K. Kontis, ed.), pp. 543–548, Berlin: Springer, 2012.
- S. Chakravarthy, O. Peroomian, U. Goldberg, and S. Palaniswamy, The CFD++ computational fluid dynamics software suite, in AIAA and SAE, 1998 World Aviation Conference, 1998.
- L. Campoli, A. Assonitis, M. Ciallella, R. Paciorri, A. Bonfiglioli, and M. Ricchiuto, UnDiFi-2D: an unstructured discontinuity fitting code for 2D grids, Computer Physics Communications, vol. 271, p. 108202, 2022.
- R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, vol. I of Pure and Applied mathematics. New York: Interscience Publishers, fourth ed., 1963.
- G. Ben-Dor, Shock wave reflection phenomena. Springer Verlag, 2007.
- K. G. Guderley, Theory of Transonic Flow. Pergamon Press, 1962.
- G. T. Kalghatgi and B. L. Hunt, The three-shock confluence problem for normally impinging, overexpanded jets, Aeronautical Quarterly, vol. 26, no. 2, pp. 117–132, 1975.
- Ames Research Staff, Equations, tables, and charts for compressible flow, tech. rep., NASA Ames Research Centre, 1953. NACA Report 1135.
- H. Hornung, Regular and mach reflection of shock waves, Annual Review of Fluid Mechanics, vol. 18, no. 1, pp. 33–58, 1986.
- C. A. Mouton, Transition between Regular Reflection and Mach Reflection in the Dual-Solution Domain. PhD thesis, California Institute of Technology, Pasadena, California, USA, 2007.
- V. N. Uskov and M. V. Chernyshov, Special and extreme triple shock-wave configurations, Journal of Applied Mechanics and Technical Physics, vol. 47, pp. 492–504, 2006.
- U. Goldberg and Y. Allaneau, Contribution from metacomp technologies, inc. to the second high lift prediction workshop, in 52nd Aerospace Sciences Meeting, 2014.
- S. Chakravarthy, D. Chi, and U. Goldberg, Flow prediction around the saccon configuration using CFD++, in 28th AIAA Applied Aerodynamics Conference, 2010.
- R. Paciorri and A. Bonfiglioli, Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique, Journal of Computational Physics, vol. 230, no. 8, pp. 3155–3177, 2011.
- A. Bonfiglioli and R. Paciorri, Convergence analysis of shock-capturing and shock-fitting solutions on unstructured grids, AIAA Journal, vol. 52, no. 7, pp. 1404–1416, 2014.
- L. Campoli, P. Quemar, A. Bonfiglioli, and M. Ricchiuto, Shock-fitting and predictor-corrector explicit ale residual distribution, in Shock Fitting: Classical Techniques, Recent Developments, and Memoirs of Gino Moretti (M. Onofri and R. Paciorri, eds.), pp. 113–129, Cham: Springer International Publishing, 2017.
- A. Assonitis, R. Paciorri, and A. Bonfiglioli, Numerical simulation of shock/boundary-layer interaction using an unstructured shock-fitting technique, Computers & Fluids, vol. 228, p. 105058, 2021.
- R. Paciorri and A. Bonfiglioli, A shock-fitting technique for 2d unstructured grids, Computers & Fluids, vol. 38, no. 3, pp. 715–726, 2009.
- A. Bonfiglioli, R. Paciorri, and L. Campoli, Unsteady shock-fitting for unstructured grids, International Journal for Numerical Methods in Fluids, vol. 81, no. 4, pp. 245–261, 2016.
- M. S. Ivanov, A. Bonfiglioli, R. Paciorri, and F. Sabetta, Computation of weak steady shock reflections by means of an unstructured shock-fitting solver, Shock Waves, vol. 20, no. 4, pp. 271–284, 2010.
- W. H. Vandevender and K. H. Haskell, The SLATEC mathematical subroutine library, SIGNUM Newsl., vol. 17, pp. 16–21, sep 1982.
- R. Richter and P. Leyland, Auto-adaptive finite element meshes, in NASA Langley Research Center, ICASE/LaRC Workshop on Adaptive Grid Methods, pp. 219–232, 1995.
- P. J. Roache, Quantification of uncertainty in computational fluid dynamics, Annual Review of Fluid Mechanics, vol. 29, no. 1, pp. 123–160, 1997.
- M. H. Carpenter and J. H. Casper, Accuracy of shock capturing in two spatial dimensions, AIAA Journal, vol. 37, no. 9, pp. 1072–1079, 1999.
- A. Assonitis, R. Paciorri, M. Ciallella, M. Ricchiuto, and A. Bonfiglioli, Extrapolated shock fitting for two-dimensional flows on structured grids, AIAA Journal, vol. 60, no. 11, pp. 6301–6312, 2022.
- M. S. Ivanov, D. Vandromme, V. Fomin, A. Kudryavtsev, A. Hadjadj, and D. Khotyanovsky, Transition between regular and Mach reflection of shock waves: new numerical and experimental results, Shock Waves, vol. 11, no. 3, pp. 199–207, 2001.
- M. Ivanov, A. Kudryavtsev, S. Nikiforov, D. Khotyanovsky, and A. Pavlov, Experiments on shock wave reflection transition and hysteresis in low-noise wind tunnel, Physics of Fluids, vol. 15, no. 6, pp. 1807–1810, 2003.
- A. Hadjadj, A. Kudryavtsev, and M. Ivanov, Numerical investigation of shock-reflection phenomena in overexpanded supersonic jets, AIAA journal, vol. 42, no. 3, pp. 570–577, 2004.
- A. M. Tesdall, R. Sanders, and N. Popivanov, Further results on Guderley Mach reflection and the triple point paradox, Journal of Scientific Computing, vol. 64, no. 3, pp. 721–744, 2015.