Have a personal or library account? Click to login
Special properties of transonic flows in a channel with a lenticular bump Cover

Special properties of transonic flows in a channel with a lenticular bump

Open Access
|Jan 2025

References

  1. J. B. McDevitt, L. L. Levy Jr, and G. S. Deiwert, Transonic flow about a thick circular-arc airfoil, AIAA Journal, vol. 14, no. 5, pp. 606–613, 1976.
  2. H. Tijdeman and R. Seebass, Transonic flow past oscillating airfoils, Annual Review of Fluid Mechanics, vol. 12, no. 1, pp. 181–222, 1980.
  3. B. Rasuo, An experimental and theoretical study of transonic flow about the NACA 0012 airfoil, in 24th AIAA Applied Aerodynamics Conference, p. 3877, 2006.
  4. V. Hermes, I. Klioutchnikov, and H. Olivier, Numerical investigation of unsteady wave phenomena for transonic airfoil flow, Aerospace Science and Technology, vol. 25, no. 1, pp. 224–233, 2013.
  5. A. Jameson, Transonic flow calculations for aircraft, in Numerical Methods in Fluid Dynamics: Lectures given at the 3rd 1983 Session of the Centro Internationale Matematico Estivo (CIME) held at Como, Italy, July 7–15, 1983, pp. 156–242, Springer, 2006.
  6. R. Paciorri, A. Bonfiglioli, and A. Assonitis, Features of “fishtail” shock interaction in transonic flows on a NACA0012 profile, AIAA Journal, 2024.
  7. R. Paciorri, A. Bonfiglioli, and A. Assonitis, The transonic flow past a NACA0012 and the von Neumann paradox, in AIAA Aviation 2022 Forum, Paper no. 2022–3990, 2022.
  8. Shell Film Unit, High speed flight: Part 2 - transonic flight. YouTube, 1959. uploaded by National Aerospace Library.
  9. J. Von Neumann, Theory of shock waves, tech. rep., Institute for Advanced Study Princeton, NJ, 1943. also in: A. H. Taub (ed.), John von Neumann Collected Works, vol. VI: Theory of Games, Astrophysics, Hydrodynamics and Meteorology. Pergamon, 1963.
  10. A. H. Taub, ed., The Collected Works of John von Neumann: Volume VI: Theory of Games, Astrophysics, Hydrodynamics and Meteorology. Pergamon Press, 1963.
  11. C. J. Chapman, High speed flow. Cambridge University Press, 2000.
  12. G. Birkhoff, Hydrodynamics: A study in logic, fact, and similitude. Princeton University Press, 1950.
  13. P. Colella and L. F. Henderson, The von Neumann paradox for the diffraction of weak shock waves, Journal of Fluid Mechanics, vol. 213, pp. 71–94, 1990.
  14. A. R. Zakharian, M. Brio, J. K. Hunter, and G. M. Webb, The von Neumann paradox in weak shock reflection, Journal of Fluid Mechanics, vol. 422, pp. 193–205, 2000.
  15. K. G. Guderley, Considerations of the structure of mixed subsonic-supersonic flow patterns, Air Material Command Tech. Report, F-TR-2168-ND, ATI No. 22780, U.S. Wright-Patterson Air Force Base, GS-AAF-Wright Field 39, Dayton, Ohio, oct 1947.
  16. E. I. Vasilev, T. Elperin, and G. Ben-Dor, Analytical reconsideration of the von Neumann paradox in the reflection of a shock wave over a wedge, Physics of Fluids, vol. 20, no. 4, p. 046101, 2008.
  17. M. Ivanov, G. Shoev, D. Khotyanovsky, Y. Bondar, and A. Kudryavtsev, Supersonic patches in steady irregular reflection of weak shock waves, in 28th International Symposium on Shock Waves (K. Kontis, ed.), pp. 543–548, Berlin: Springer, 2012.
  18. S. Chakravarthy, O. Peroomian, U. Goldberg, and S. Palaniswamy, The CFD++ computational fluid dynamics software suite, in AIAA and SAE, 1998 World Aviation Conference, 1998.
  19. L. Campoli, A. Assonitis, M. Ciallella, R. Paciorri, A. Bonfiglioli, and M. Ricchiuto, UnDiFi-2D: an unstructured discontinuity fitting code for 2D grids, Computer Physics Communications, vol. 271, p. 108202, 2022.
  20. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, vol. I of Pure and Applied mathematics. New York: Interscience Publishers, fourth ed., 1963.
  21. G. Ben-Dor, Shock wave reflection phenomena. Springer Verlag, 2007.
  22. K. G. Guderley, Theory of Transonic Flow. Pergamon Press, 1962.
  23. G. T. Kalghatgi and B. L. Hunt, The three-shock confluence problem for normally impinging, overexpanded jets, Aeronautical Quarterly, vol. 26, no. 2, pp. 117–132, 1975.
  24. Ames Research Staff, Equations, tables, and charts for compressible flow, tech. rep., NASA Ames Research Centre, 1953. NACA Report 1135.
  25. H. Hornung, Regular and mach reflection of shock waves, Annual Review of Fluid Mechanics, vol. 18, no. 1, pp. 33–58, 1986.
  26. C. A. Mouton, Transition between Regular Reflection and Mach Reflection in the Dual-Solution Domain. PhD thesis, California Institute of Technology, Pasadena, California, USA, 2007.
  27. V. N. Uskov and M. V. Chernyshov, Special and extreme triple shock-wave configurations, Journal of Applied Mechanics and Technical Physics, vol. 47, pp. 492–504, 2006.
  28. U. Goldberg and Y. Allaneau, Contribution from metacomp technologies, inc. to the second high lift prediction workshop, in 52nd Aerospace Sciences Meeting, 2014.
  29. S. Chakravarthy, D. Chi, and U. Goldberg, Flow prediction around the saccon configuration using CFD++, in 28th AIAA Applied Aerodynamics Conference, 2010.
  30. R. Paciorri and A. Bonfiglioli, Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique, Journal of Computational Physics, vol. 230, no. 8, pp. 3155–3177, 2011.
  31. A. Bonfiglioli and R. Paciorri, Convergence analysis of shock-capturing and shock-fitting solutions on unstructured grids, AIAA Journal, vol. 52, no. 7, pp. 1404–1416, 2014.
  32. L. Campoli, P. Quemar, A. Bonfiglioli, and M. Ricchiuto, Shock-fitting and predictor-corrector explicit ale residual distribution, in Shock Fitting: Classical Techniques, Recent Developments, and Memoirs of Gino Moretti (M. Onofri and R. Paciorri, eds.), pp. 113–129, Cham: Springer International Publishing, 2017.
  33. A. Assonitis, R. Paciorri, and A. Bonfiglioli, Numerical simulation of shock/boundary-layer interaction using an unstructured shock-fitting technique, Computers & Fluids, vol. 228, p. 105058, 2021.
  34. R. Paciorri and A. Bonfiglioli, A shock-fitting technique for 2d unstructured grids, Computers & Fluids, vol. 38, no. 3, pp. 715–726, 2009.
  35. A. Bonfiglioli, R. Paciorri, and L. Campoli, Unsteady shock-fitting for unstructured grids, International Journal for Numerical Methods in Fluids, vol. 81, no. 4, pp. 245–261, 2016.
  36. M. S. Ivanov, A. Bonfiglioli, R. Paciorri, and F. Sabetta, Computation of weak steady shock reflections by means of an unstructured shock-fitting solver, Shock Waves, vol. 20, no. 4, pp. 271–284, 2010.
  37. W. H. Vandevender and K. H. Haskell, The SLATEC mathematical subroutine library, SIGNUM Newsl., vol. 17, pp. 16–21, sep 1982.
  38. R. Richter and P. Leyland, Auto-adaptive finite element meshes, in NASA Langley Research Center, ICASE/LaRC Workshop on Adaptive Grid Methods, pp. 219–232, 1995.
  39. P. J. Roache, Quantification of uncertainty in computational fluid dynamics, Annual Review of Fluid Mechanics, vol. 29, no. 1, pp. 123–160, 1997.
  40. M. H. Carpenter and J. H. Casper, Accuracy of shock capturing in two spatial dimensions, AIAA Journal, vol. 37, no. 9, pp. 1072–1079, 1999.
  41. A. Assonitis, R. Paciorri, M. Ciallella, M. Ricchiuto, and A. Bonfiglioli, Extrapolated shock fitting for two-dimensional flows on structured grids, AIAA Journal, vol. 60, no. 11, pp. 6301–6312, 2022.
  42. M. S. Ivanov, D. Vandromme, V. Fomin, A. Kudryavtsev, A. Hadjadj, and D. Khotyanovsky, Transition between regular and Mach reflection of shock waves: new numerical and experimental results, Shock Waves, vol. 11, no. 3, pp. 199–207, 2001.
  43. M. Ivanov, A. Kudryavtsev, S. Nikiforov, D. Khotyanovsky, and A. Pavlov, Experiments on shock wave reflection transition and hysteresis in low-noise wind tunnel, Physics of Fluids, vol. 15, no. 6, pp. 1807–1810, 2003.
  44. A. Hadjadj, A. Kudryavtsev, and M. Ivanov, Numerical investigation of shock-reflection phenomena in overexpanded supersonic jets, AIAA journal, vol. 42, no. 3, pp. 570–577, 2004.
  45. A. M. Tesdall, R. Sanders, and N. Popivanov, Further results on Guderley Mach reflection and the triple point paradox, Journal of Scientific Computing, vol. 64, no. 3, pp. 721–744, 2015.
Language: English
Page range: 1 - 18
Submitted on: Feb 28, 2024
Accepted on: Sep 24, 2024
Published on: Jan 21, 2025
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Renato Paciorri, Alessia Assonitis, Aldo Bonfiglioli, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution 4.0 License.