Have a personal or library account? Click to login
Tempered fractional differential equations on hyperbolic space Cover

Tempered fractional differential equations on hyperbolic space

By: Roberto Garra and  Enzo Orsingher  
Open Access
|Oct 2024

References

  1. M. S. Alrawashdeh, J. F. Kelly, M. M. Meerschaert, and H. P. Scheffler, Applications of inverse tempered stable subordinators, Computers & Mathematics with Applications, vol. 73, no. 6, pp. 892–905, 2017.
  2. L. Lao and E. Orsingher, Hyperbolic and fractional hyperbolic Brownian motion, Stochastics, vol. 79, no. 6, pp. 505–522, 2007.
  3. M. D’Ovidio, E. Orsingher, and B. Toaldo, Fractional telegraph-type equations and hyperbolic Brownian motion, Statistics & Probability Letters, vol. 89, pp. 131–137, 2014.
  4. E. D. Micheli, I. Scorza, and G. Viano, Hyperbolic geometrical optics: Hyperbolic glass, Journal of mathematical physics, vol. 47, no. 2, 2006.
  5. A. A. Kilbas, H. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations. Elsevier, 2006.
  6. R. Garra, F. Maltese, and E. Orsingher, A note on generalized fractional diffusion equations on Poincaré half plane, Fractional Differential Calculus, vol. 11, no. 1, pp. 111–120, 2021.
Language: English
Page range: 3 - 7
Submitted on: Jun 20, 2024
Accepted on: Jul 31, 2024
Published on: Oct 12, 2024
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Roberto Garra, Enzo Orsingher, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.