Have a personal or library account? Click to login
Soap films: from the Plateau problem to deformable boundaries Cover

Soap films: from the Plateau problem to deformable boundaries

Open Access
|Nov 2024

References

  1. L. M. Siqveland and S. M. Skjæveland, Derivations of the Young-Laplace equation, Capillarity, vol. 4, no. 2, pp. 23–30, 2021.
  2. M. P. Do Carmo, Differential geometry of curves and surfaces: revised and updated second edition. Courier Dover Publications, 2016.
  3. H. Jenkins and J. Serrin, Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Archive for Rational Mechanics and Analysis, vol. 21, no. 4, pp. 321–342, 1966.
  4. A. Korn,Über Minimalfl¨achen, deren Randkurven wenig von ebenen Kurven abweichen, vol. II. Verlag der Königl. Akad. der Wiss., 1909.
  5. C. Müntz, Zum Randwertproblem der partiellen Differentialgleichung der Minimalfl¨achen, Journal für die Reine und Angewandte Mathematik, vol. 139, pp. 52–79, 1911.
  6. P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Mathematica, vol. 115, no. 1, pp. 271–310, 1966.
  7. J. Douglas, Solution of the problem of Plateau, Transactions of the American Mathematical Society, vol. 33, no. 1, pp. 263–321, 1931.
  8. T. Radó, The problem of the least area and the problem of Plateau, Mathematische Zeitschrift, vol. 32, no. 1, pp. 763–796, 1930.
  9. U. Dierkes, S. Hildebrandt, and F. Sauvigny, Minimal surfaces. Springer, 2010.
  10. B. Dacorogna, Direct methods in the calculus of variations, vol. 78 of Applied Mathematical Sciences. Springer, New York, second ed., 2008.
  11. C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Transactions of the American Mathematical Society, vol. 43, no. 1, pp. 126–166, 1938.
  12. J. C. Nitsche, Lecture on minimal surfaces. Cambridge university press, 1989.
  13. R. D. Gulliver, Regularity of minimizing surfaces of prescribed mean curvature, Annals of Mathematics, vol. 97, no. 2, pp. 275–305, 1973.
  14. L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.
  15. F. Maggi, Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure Theory. No. 135 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2012.
  16. H. Federer, Geometric measure theory, vol. Band 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York, Inc., New York, 1969.
  17. L. Simon, Lectures on geometric measure theory, vol. 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.
  18. F. Almgren, The theory of varifolds. Mimeographed notes, Princeton, 1965.
  19. J. E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J., vol. 35, no. 1, pp. 45–71, 1986.
  20. E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., vol. 7, pp. 243–268, 1969.
  21. F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc., vol. 4, no. 165, pp. viii+199, 1976.
  22. J. E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math., vol. 103, no. 3, pp. 489–539, 1976.
  23. J. Harrison, Soap film solutions to Plateau’s problem, J. Geom. Anal., vol. 24, no. 1, pp. 271–297, 2014.
  24. J. Harrison and H. Pugh, Existence and soap film regularity of solutions to Plateau’s problem, Adv. Calc. Var., vol. 9, no. 4, pp. 357–394, 2016.
  25. C. De Lellis, F. Ghiraldin, and F. Maggi, A direct approach to Plateau’s problem, J. Eur. Math. Soc., vol. 19, no. 8, pp. 2219–2240, 2017.
  26. F. Bernatzki, On the existence and regularity of mass-minimizing currents with an elastic boundary, Annals of Global Analysis and Geometry, vol. 15, pp. 379–399, 1997.
  27. F. Bernatzki and R. Ye, Minimal surfaces with an elastic boundary, Annals of Global Analysis and Geometry, vol. 19, no. 1, pp. 1–9, 2001.
  28. G. G. Giusteri, P. Franceschini, and E. Fried, Instability paths in the Kirchhoff–Plateau problem, Journal of Nonlinear Science, vol. 26, pp. 1097–1132, 2016.
  29. Y.-c. Chen and E. Fried, Stability and bifurcation of a soap film spanning a flexible loop, Journal of Elasticity, vol. 116, pp. 75–100, 2014.
  30. A. Biria and E. Fried, Buckling of a soap film spanning a flexible loop resistant to bending and twisting, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 470, no. 2172, p. 20140368, 2014.
  31. A. Biria and E. Fried, Theoretical and experimental study of the stability of a soap film spanning a flexible loop, International Journal of Engineering Science, vol. 94, pp. 86–102, 2015.
  32. T. Hoang and E. Fried, Influence of a spanning liquid film on the stability and buckling of a circular loop with intrinsic curvature or intrinsic twist density, Mathematics and Mechanics of Solids, vol. 23, no. 1, pp. 43–66, 2018.
  33. G. G. Giusteri, L. Lussardi, and E. Fried, Solution of the Kirchhoff-Plateau problem, J. Nonlinear Sci., vol. 27, no. 3, pp. 1043–1063, 2017.
  34. G. Bevilacqua, L. Lussardi, and A. Marzocchi, Soap film spanning electrically repulsive elastic protein links, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur., vol. 96, pp. A1, 13, 2018.
  35. G. Bevilacqua, L. Lussardi, and A. Marzocchi, Soap film spanning an elastic link, Quart. Appl. Math., vol. 77, no. 3, pp. 507–523, 2019.
  36. G. Bevilacqua, L. Lussardi, and A. Marzocchi, Dimensional reduction of the Kirchhoff-Plateau problem, J. Elasticity, vol. 140, no. 1, pp. 135–148, 2020.
  37. A. De Rosa and L. Lussardi, On the anisotropic Kirchhoff-Plateau problem, Math. Eng., vol. 4, no. 2, pp. Paper No. 011, 13, 2022.
  38. G. Bevilacqua and C. Lonati, Effects of surface tension and elasticity on critical points of the Kirchhoff–Plateau problem, Bollettino dellUnione Matematica Italiana, vol. 17, no. 2, pp. 221–240, 2024.
  39. S. S. Antman, Nonlinear problems of elasticity, vol. 107 of Applied Mathematical Sciences. Springer, New York, second ed., 2005.
  40. P. Hartman, Ordinary differential equations. Birkh¨auser, Boston, MA, second ed., 1982.
  41. O. Gonzalez, J. H. Maddocks, F. Schuricht, and H. von der Mosel, Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equations, vol. 14, no. 1, pp. 29–68, 2002.
  42. A. Lytchak and S. Wenger, Area minimizing discs in metric spaces, Archive for Rational Mechanics and Analysis, vol. 223, pp. 1123–1182, 2017.
  43. P. Creutz, Plateau’s problem for singular curves, Communications in Analysis and Geometry, vol. 30, no. 8, pp. 1779–1792, 2022.
  44. G. Bevilacqua, L. Lussardi, and A. Marzocchi, Variational analysis of inextensible elastic curves, Proceedings of the Royal Society A, vol. 478, no. 2260, p. 20210741, 2022.
  45. G. Bevilacqua, L. Lussardi, and A. Marzocchi, Geometric invariants of non-smooth framed curves, Accepted in INdAM-Series, “Anisotropic Isoperimetric Problems & Related Topics, arXiv preprint arXiv:2301.03525, 2023.
  46. F. Ballarin, G. Bevilacqua, L. Lussardi, and A. Marzocchi, Elastic membranes spanning deformable curves, ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, p. e202300890, 2024.
  47. G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results, Archive for Rational Mechanics and Analysis, vol. 162, pp. 101–135, 2002.
Language: English
Page range: 137 - 155
Submitted on: Oct 9, 2024
Accepted on: Nov 20, 2024
Published on: Nov 30, 2024
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Giulia Bevilacqua, Luca Lussardi, Alfredo Marzocchi, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution 4.0 License.