References
- E. K. Leinartas and O. A. Shishkina, The discrete analog of the Newton-Leibniz formula in the problem of summation over simplex lattice points, J. Sib. Fed. Univ. Math. Phys., vol. 12, pp. 503–508, 2019.
- T. Cuchta and R. Luketic, Discrete hypergeometric Legendre polynomials, Mathematics, vol. 9, no. 20, p. 2546, 2021.
- L. Castilla, C. Cesarano, D. Bedoya, W. Ramírez, P. Agarwal, and S. Jain, A generalization of the Apostol-type Frobenius-Genocchi polynomials of level ι, in Fractional Differential Equations (P. Agarwal, C. Cattani, and S. Momani, eds.), Advanced Studies in Complex Systems, ch. 2, pp. 11–26, Academic Press, 2024.
- H. Hassani, Z. Avazzadeh, P. Agarwal, M. J. Ebadi, and A. Bayati Eshkaftaki, Generalized Bernoulli-Laguerre polynomials: Applications in coupled nonlinear system of variable-order fractional PDEs, J. Optim. Theory Appl, vol. 200, no. 1, pp. 371–393, 2024.
- A. A. Attiya, A. M. Lashin, E. E. Ali, and P. Agarwal, Coefficient bounds for certain classes of analytic functions associated with Faber polynomial, Symmetry, vol. 13, no. 2, p. 302, 2021.
- S. Albosaily, Y. Quintana, A. Iqbal, and W. Khan, Lagrange-based hypergeometric Bernoulli polynomials, Symmetry, vol. 14, no. 125, 2022.
- Y. Quintana, Generalized mixed type Bernoulli-Gegenbauer polynomial, Kragujevac J. Math, vol. 47, no. 2, pp. 245–257, 2023.
- Y. Quintana, W. Ramírez, and A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo, vol. 55, no. 3, pp. 1–29, 2018.
- Y. Quintana and H. Torres-Guzmán, Some relations between the Riemann zeta function and the generalized Bernoulli polynomials of level m, Univers. J. Math. Appl, vol. 2, no. 4, pp. 188–201, 2019.
- Y. Quintana and A. Urieles, Quadrature formulae of Euler-Maclaurin type based on generalized Euler polynomials of level m, Bull. Comput. Appl. Math, vol. 6, no. 2, pp. 43–64, 2018.
- D. Peralta, Y. Quintana, and S. A. Wani, Mixed-type hypergeometric Bernoulli-Gegenbauer polynomials, Mathematics, vol. 11, no. 18, p. 3920, 2023.
- L. Comtet, Advanced Combinatorics: The art of Finite and Infinite Expansions, 2nd ed.; D. Reidel Publishing Company, Inc.: Boston, USA, 1974.
- L. Kargin and V. Kurt, On the generalization of the Euler polynomials with the real parameters, Appl. Math. Comput, vol. 218, no. 3, pp. 856–859, 2011.
- F. T. Howard, Some sequences of rational numbers related to the exponential function, Duke Math. J, vol. 34, pp. 701–716, 1967.
- A. Hassen and H. D. Nguyen, Hypergeometric Bernoulli polynomials and Appell sequences, Int. J. Number Theory, vol. 4, no. 5, pp. 767–774, 2008.
- R. Booth and A. Hassen, Hypergeometric Bernoulli polynomials, J. Algebra Number Theory, vol. 2, no. 1, pp. 1–7, 2011.
- S. Hu and M.-S. Kim, On hypergeometric Bernoulli numbers and polynomials, Acta Math. Hungar, vol. 154, pp. 134–146, 2018.
- P. E. Ricci and P. Natalini, Hypergeometric Bernoulli polynomials and r-associated Stirling numbers of the second kind, Integers, vol. 22, no. #A56, 2022.
- P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math, vol. 2003, no. 3, pp. 155–163, 2003.
- H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, 1st ed.; Ellis Horwood Ltd.: West Sussex, England, 1984.
- H. M. Srivastava and J. Choi, Zeta and q-zeta Functions and Associated series and Integrals, 1st ed.; Elsevier: London, UK, 2012.
- P. Hernández-Llanos, Y. Quintana, and A. Urieles, About extensions of generalized Apostol-type polynomials, Results Math, vol. 68, pp. 203–225, 2015.
- G. Szegø, Orthogonal Polynomials, 4th ed.; Amer. Math. Soc.: Providence, Rhode Island, USA, 1975.
- R. Askey, Orthogonal Polynomials and Special Functions, 1st ed.; Reg. Conf. Series in Appl. Math. 21 SIAM: Philadelphia, USA, 1975.
- L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, 1st ed Macmillan Publishing Company New York USA, 1985.
- N. M. Temme, Special Functions. An Introduction to the classical Functions of Mathematical Physics, 1st ed.; John Wiley & Sons Inc.: New York, USA, 1996.
- V. G. Paschoa, D. Pérez, and Y. Quintana, On a theorem by Bojanov and Naidenov applied to families of Gegenbauer-Sobolev polynomials, Commun. Math. Anal, vol. 16, pp. 9–18, 2014.
- H. Pijeira, Y. Quintana, and W. Urbina, Zero location and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev, Rev. Col. Mat, vol. 35, pp. 77–97, 2001.
- C. Cesarano, Generalized Chebyshev polynomials, Hacet. J. Math. Stat, vol. 3, no. 5, pp. 731–740, 2014.
- C. Cesarano and D. Assante, A note on generalized Bessel functions, Int. J. Math. Models Methods Appl. Sci, vol. 7, no. 6, pp. 625–629, 2014.
- C. Cesarano, G. M. Cennamo, and L. Placidi, Humbert polynomials and functions in terms of Hermite polynomials towards applications to wave propagation, WSEAS Trans. Math, vol. 13, pp. 595–602, 2014.
- C. Cesarano, B. Germano, and P. E. Ricci, Laguerre-type Bessel functions, Integral Transforms Spec. Funct, vol. 16, no. 4, pp. 315–322, 2005.