References
- A. Miettinen and T. Siikonen, Application of pressure- and density-based methods for different flow speeds, International Journal for Numerical Methods in Fluids, vol. 79, 2015.
- M. Girfoglio, A. Quaini, and G. Rozza, Validation of an OpenFOAM®-based solver for the Euler equations with benchmarks for mesoscale atmospheric modeling, AIP Advances, vol. 13, no. 5, p. 055024, 2023.
- M. Girfoglio, A. Quaini, and G. Rozza, GEA: A New Finite Volume-Based Open Source Code for the Numerical Simulation of Atmospheric and Ocean Flows, in Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems (E. Franck, J. Fuhrmann, V. Michel-Dansac, and L. Navoret, eds.), pp. 151–159, Cham: Springer Nature Switzerland, 2023.
- N. Clinco, M. Girfoglio, A. Quaini, and G. Rozza, Filter stabilization for the mildly compressible Euler equations with application to atmosphere dynamics simulations, Computers and Fluids, vol. 266, p. 106057, 2023.
- A. Hajisharifi, M. Girfoglio, A. Quaini, and G. Rozza, A comparison of data-driven reduced order models for the simulation of mesoscale atmospheric flow, Finite Elements in Analysis and Design, vol. 228, p. 104050, 2024.
- M. Girfoglio, A. Quaini, and G. Rozza, A comparative computational study of different formulations of the compressible Euler equations for mesoscale atmospheric flows in a finite volume framework, Preprint: https://arxiv.org/abs/2402.18136, 2024.
- GEA-Geophysical and Environmental Applications. https://github.com/GEA-Geophysical-and-Environmental-Apps/GEA, 2023.
- S. K. Godunov and I. Bohachevsky, Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics, Matematiˇceskij sbornik, vol. 47(89), no. 3, pp. 271–306, 1959.
- P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol. 43, no. 2, pp. 357–372, 1981.
- P. L. Roe and J. Pike, Efficient construction and utilisation of approximate Riemann solutions, Proceedings of the sixth international symposium on Computing methods in applied sciences and engineering, VI, 1985.
- E. F. Toro, M. Spruce, and W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, vol. 4, no. 1, pp. 25–34, 1994.
- M. Liou, A sequel to AUSM: AUSM+, Journal of Computational Physics, vol. 129, no. 2, pp. 364–382, 1996.
- M. Liou, A sequel to AUSM, part ii: AUSM+-up for all speeds, Journal of Computational Physics, vol. 214, no. 1, pp. 137–170, 2006.
- A. Harten, P. D. Lax, and B. V. Leer, On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, SIAM Review, vol. 25, no. 1, pp. 35–61, 1983.
- M. Liou. and C. J. Steffen, A new flux splitting scheme, Journal of Computational Physics, vol. 107, no. 1, pp. 23–39, 1993.
- K.Kitamura and E. Shima, AUSM-like expression of HLLC and its all-speed extension, International Journal for Numerical Methods in Fluids, vol. 92, no. 4, pp. 246–265, 2020.
- R. K¨appeli and S. Mishra, Well-balanced schemes for the Euler equations with gravitation, Journal of Computational Physics, vol. 259, pp. 199–219, 2014.
- N. Botta, R. Klein, S. Langenberg, and S. Lutzenkirchen, Well balanced finite volume methods for nearly hydrostatic flows, Journal of Computational Physics, vol. 196, pp. 539–565, 2004.
- M. Restelli, Semi-Lagrangian and semi-implicit discontinuous Galerkin methods for atmospheric modeling applications. PhD thesis, Politecnico di Milano, 2007.
- M. Restelli and F. X. Giraldo, A Conservative Discontinuous Galerkin Semi−Implicit Formulation for the Navier–Stokes Equations in Nonhydrostatic Mesoscale Modeling, SIAM Journal on Scientific Computing, vol. 31, no. 3, pp. 2231–2257, 2009.
- N. Ahmad and J. Lindeman, Euler solutions using flux-based wave decomposition, International Journal for Numerical Methods in Fluids, vol. 54, pp. 47–72, 2007.
- J. Straka, R. Wilhelmson, L. Wicker, J. Anderson, and K. Droegemeier, Numerical solution of a nonlinear density current: a benchmark solution and comparisons, Int. J. Num. Meth. in Fluids, vol. 17, pp. 1–22, 1993.
- F. X. Giraldo and M. Restelli, A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases, Journal of Computational Physics, vol. 227, pp. 3849–3877, 2008.
- S. Marras, M. Nazarov, and F. X. Giraldo, Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES, Journal of Computational Physics, vol. 301, pp. 77–101, 2015.
- J. F. Kelly and F. X. Giraldo, Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited-area mode, Journal of Computational Physics, vol. 231, pp. 7988–8008, 2012.
- J. B. Klemp, W. C. Skamarock, and O. Fuhrer, Numerical consistency of metric terms in terrainfollowing coordinates, Monthly Weather Review, vol. 131, no. 7, pp. 1229 – 1239, 2003.
- C.Schär, D.Leuenberger, O.Fuhrer, D.L¨uthi, and C.Girard, A new terrain-following vertical coordinate formulation for atmospheric prediction models, Monthly Weather Review, vol. 130, no. 10, pp. 2459 – 2480, 2002.
- M. Girfoglio, A. Quaini, and G. Rozza, A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization, Computers & Fluids, vol. 187, pp. 27–45, 2019.
- C. J. Greenshields, H. G. Weller, L. Gasparini, and J. M. Reese, Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows, International Journal for Numerical Methods in Fluids, vol. 63, no. 1, pp. 1–21, 2010.
- B. V. Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, Journal of Computational Physics, vol. 32, no. 1, pp. 101–136, 1979.
- A. Quarteroni, Numerical Models for Differential Problems. Springer, 2009.
- S. Marras, M. Moragues, M. V´azquez, O. Jorba, and G. Houzeaux, A Variational Multiscale Stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows, Journal of Computational Physics, vol. 236, pp. 380–407, 2013.