References
- H. E. Adelson, and J. R. Bergen, Spatiotemporal energy models for the perception of motion, Journal of the Optical Society of America A vol. 2, no. 2, 1985.
- C.C. Aggarwal, Neural Networks and Deep Learning, A Textbook, Springer 2018.
- A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, Robust discriminative response map fitting with constrained local models, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3444-3451, 2013.
- D. Brunet, E.R. Vrscay, and Z. Wang, On the mathematical properties of the structural similarity index, IEEE Transactions on Image Processing, vol. 21, no. 4, 2012.
- V. Bruni, G. Ramponi, A. Restrepo, and D. Vitulano, Context-Based Defading of Archive Photographs, Journal of Image and Video Processing, 2009.
- V. Bruni, E. Rossi, and D. Vitulano, On the Equivalence Between Jensen-Shannon Divergence and Michelson Contrast, IEEE Transactions on Information Theory, vol. 58, no. 7, pp. 4278-4288, 2012.
- V. Bruni, D. Vitulano, and Z. Wang, Special issue on human vision and information theory, Signal, Image and Video Processing, vol. 7, no.3,pp. 389-390, 2013.
- V. Bruni, D. De Canditiis, and D. Vitulano, Speed up of Video Enhancement based on Human Perception, Signal Image and Video Processing, vol. 8, pp. 1199-1209, 2014.
- V. Bruni, D. Panella, and D. Vitulano, Non local means image denoising using noise-adaptive SSIM, Proceedings of the 23rd European Signal Processing Conference, EUSIPCO, 2015.
- V. Bruni, and D. Vitulano, Jensen shannon divergence as reduced reference measure for image denoising, Lecture Notes in Computer Science, vol. 10016, 2016.
- V. Bruni, and D. Vitulano, An entropy based approach for SSIM speed up, Signal Processing, vol. 135, pp. 198-209, 2017.
- V. Bruni, and D. Vitulano, SSIM Based Signature of Facial Micro-Expressions, Proceedings of International Conference in Image Analysis and Recognition (ICIAR 2020), Lecture Notes in Computer Science, vol. 12131, 2020.
- V. Bruni, and D. Vitulano, A Fast Preprocessing Method for Micro-Expression Spotting via Perceptual Detection of Frozen Frames, Journal of Imaging, MDPI, vol. 7, no. 4, 2021.
- F.W. Campbell, and J.G. Robson, Application of Fourier analysis to the visibility of gratings, Journal of Physiology, vol. 197, no. 3, pp. 551-566, 1968.
- D. Cristinacce, T. F. Cootes, et al., Feature detection and tracking with constrained local models, Proceedings of the British Machine Vision Conference 2006, Edinburgh, UK, vol. 1, 2006.
- C. Duque, O. Alata, R. Emonet, A.C. Legrand, and H. Konik, Micro-expression spotting using the Riesz pyramid, Proceedings of WACV, Lake Tahoe, 2018.
- P. Ekman, and M.V. Friesen, Nonverbal leakage and clues to deception, Psychiatry, vol. 32, pp. 88-106, 1969.
- P. Ekman, Lie catching and microexpressions. The Philosophy of Deception, ed C. Martin (Oxford University Press), pp. 118-133, 2009.
- P. Ekman, Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage, WW Norton & Company, 2009.
- V. Esmaeili, M. Mohassel Feghhi, and S.O. Shahdi, A comprehensive survey on facial micro-expression: approaches and databases, Multimedia Tools and Applications, 2022.
- W. Gong, and N.M. Elfiky, Deep learning-based microexpression recognition: a survey, Neural Computing and Applications, 2022.
- E.A. Haggard, and K.S. Isaacs, Micromomentary facial expressions as indicators of ego mechanisms in psychotherapy, Methods of Research in Psychotherapy. L. A. Gottschalk and H. Auerbach (Boston, MA: Springer), pp. 154-165, 1966
- Y. He, S.J. Wang, J. Li, and M. H. Yap, Spotting macro-and micro-expression intervals in long video sequences, Proceedings of the 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 742-748, 2020.
- U. Hess, and R.E. Kleck, Differentiating emotion elicited and deliberate emotional facial expressions, European Journal of Social Psychology, vol. 20, pp. 369-385, 1990.
- M. Kendall, and A. Stuart, The Advanced Theory of Statistics, Chareles Griffinn & Company Limited, 1976.
- D. E. King, Dlib-ml, A machine learning toolkit, The Journal of Machine Learning Research, vol. 10, pp. 1755-1758, 2009.
- L. Jingting, S.J. Wang, M. H. Yap, J. See, X. Hong, and X. Li, Megc2020-the third facial microexpression grand challenge, Proceedings of the 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 777-780, 2020.
- Y. Li, X. Huang, and G. Zhao, Can micro-expression be recognized based on single apex frame?, Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), pp. 3094-3098, 2018.
- J. Li, C. Soladie, and R. Seguier, Ltp-ml, Micro-expression detection by recognition of local temporal pattern of facial movements, Proceedings of the 13th IEEE international conference on automatic face & gesture recognition (FG 2018), pp. 634-641, 2018.
- J. Li, C. Soladie, and R. Seguier, Local temporal pattern and data augmentation for micro-expression spotting, IEEE Transactions on Affective Computing, 2020.
- S.T. Liong, J. See, K. Wong, A.C. Le Ngo, Y.H. Oh, and R. Phan, Automatic apex frame spotting in micro-expression database, Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 665-669, 2015.
- S.T. Liong, J. See, K. Wong, and R. C.W. Phan, Automatic microexpression recognition from long video using a single spotted apex, Proceedings of the Asian Conference on Computer Vision, Springer, pp. 345-360, 2016.
- G.B. Liong, J. See, and L.K. Wong, Shallow optical flow three- stream cnn for macro-and microexpression spotting from long videos, Proceedings of the IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, pp. 2643-2647, 2021.
- G.B. Liong, J. See, and C.S. Chan, Spot-then-recognize: A Micro-Expression Analysis Network for seamless evaluation of long videos, Signal Processing: Image Communication, vol. 110, 2023.
- H. Ma, G. An, S. Wu, and F. Yang, A region histogram of oriented optical flow (RHOOF) feature for apex frame spotting in micro-expression, Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 281–286, 2017.
- V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, Independence of luminance and contrast in natural scenes and in the early visual system, Nature Neuroscience, vol.8, pp. 1690-1697, 2005.
- I. Megvii, Face++ research toolkit, 2013.
- A. Mehrabian, Nonverbal Communication, Publisher, ALDINE-ATHERTON, 1972 (eBook Published, 31 October 2017).
- MEVIEW Homepage, url http://cmp.felk.cvut.cz/cechj/ME/.
- S. Milborrow, and F. Nicolls, Active shape models with sift descriptors and mars, Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), vol.2, pp. 380-387, 2014.
- A. Moilanen, G. Zhao, and M. Pietikainen, Spotting rapid facial movements from videos using appearance-based feature difference analysis, Proceedings of the 22nd International Conference on Pattern Recognition (ICPR), pp. 1722–1727, 2014.
- Y.H. Oh, J. See, A. C. Le Ngo, R.C. Phan, and V.M. Baskaran, A Survey of Automatic Facial Micro- Expression Analysis: Databases, Methods, and Challenges, Frontiers in Psychology, 2018.
- S. Polikovsky, and Y. Kameda, Facial micro-expression detection in hi-speed video based on facial action coding system (facs), IEICE Transactions on Information and Systems, vol. 9, pp. 81-92, 2013.
- S. Porter, and L. Ten Brinke, Reading between the lies identifying concealed and falsified emotions in universal facial expressions, Psychological Science, vol. 19, pp. 508-514, 2008.
- F. Qu, S.J. Wang, W.J. Yan, H. Li, S. Wu, and X. Fu, Cas(me)2: a database for spontaneous macroexpression and micro-expression spotting and recognition, IEEE Transactions on Affective Computing, vol. 9, no. 4, pp. 424-436, 2017.
- C. Shorten, and T.M. Khoshgoftaar, A survey on Image Data Augmentation for Deep Learning, Journal of Big Data, vol. 6, no. 60, 2019.
- M. Shreve, S. Godavarthy, D. Goldgof, and S. Sarkar, Macro-and micro-expression spotting in long videos using spatio-temporal strain, Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), pp. 51-56, 2011.
- M. Shreve, J. Brizzi, S. Felatyev, T. Luguev, D. Goldgof, and S. Sarkar, Automatic expression spotting in videos, Image and Vision Computing, vol. 32, no. 8, pp. 476-486, 2014.
- M.F. Valstar, and M. Pantic, Fully automatic recognition of the temporal phases of facial actions, IEEE Transactions on Systems Man and Cybernetics Part B, vol.42, pp. 28-43, 2012.
- M. Verburg, and V. Menkovski, Micro-expression detection in long videos using optical flow and recurrent neural networks, Proceedings of the 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pp. 1-6, 2019.
- Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol. 13, pp. 600-612, 2004.
- S.J. Wang, S. Wu, X. Qian, J. Li, and X. Fu, A main directional maximal difference analysis for spotting facial movements from long-term videos, Neurocomputing, vol. 230, pp. 382-389, 2016.
- S.J. Wang, Y. He, J. Li, and X. Fu, Mesnet: A convolutional neural network for spotting multi-scale micro-expression intervals in long videos, IEEE Transactions on Image Processing, vol. 30, pp. 3956-3969, 2021.
- S. Weinberger, Airport security: intent to deceive?, Nature, vol. 465, pp. 412-415, 2010.
- S. Winkler, Digital Video Quality - Vision Models and Metrics, John Wiley & Sons, Ltd, 2005.
- W.J. Yan, Q. Wu, J. Liang, Y.H. Chen, and X. Fu, How fast are the leaked facial expressions: the duration of micro-expressions, Journal of Nonverbal Behavior, vol. 37, pp. 217-230, 2013.
- W.J. Yan, Q. Wu, Y.J. Liu, S.J. Wang, and X. Fu, Casme database: a dataset of spontaneous microexpressions collected from neutralized faces, Proceedinds of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1-7, 2013.
- W.J. Yan, X. Li, S.J.Wang, G. Zhao, Y.J. Liu, Y.H. Chen, et al., CASME II: an improved spontaneous micro-expression database and the baseline evaluation, PLoS ONE, vol. 9, 2014.
- W.J.Yan, and Y.H Chen, Measuring dynamic micro-expressions via feature extraction methods, Journal of Computational Science, vol. 25, pp. 318-326, 2017.
- C.H. Yap, C. Kendrick, and M.H. Yap, Samm long videos: A spontaneous facial micro-and macroexpressions dataset, Proceedings of the 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 771-776, 2020.
- Z. Zhang, T. Chen, H. Meng, G. Liu, and X. Fu, Smeconvnet: A convolutional neural network for spotting spontaneous facial micro-expression from long videos, IEEE Access, vol. 6, pp. 71143-71151, 2018.
- H. Zhang, L. Yin, and H. Zhang, A review of micro-expression spotting: methods and challenges, Multimedia Systems, vol. 29, pp. 1897-1915, 2023.