References
- L. Sun, M. Tan, and Z. Zhou, A survey of practical adversarial example attacks, Cybersecurity, vol. 1, 12 2018.
- L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-dujaili, Y. Duan, O. Al-Shamma, J. I. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, Review of deep learning: concepts, cnn architectures, challenges, applications, future directions, Journal of Big Data, vol. 8, 2021.
- L. Budach, M. Feuerpfeil, N. Ihde, A. Nathansen, N. Noack, H. Patzlaff, F. Naumann, and H. Harmouch, The effects of data quality on machine learning performance, 2022.
- F. Chung, Spectral Graph Theory. No. No. 92 in CBMS Regional Conference Series, Conference Board of the Mathematical Sciences, 1996.
- M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal, vol. 23, no. 2, pp. 298–305, 1973.
- M. Fiedler, Laplacian of graphs and algebraic connectivity, Banach Center Publications, vol. 25, no. 1, pp. 57–70, 1989.
- E. Pineau, Using laplacian spectrum as graph feature representation, 2019.
- A. Sanfeliu and K.-S. Fu, A distance measure between attributed relational graphs for pattern recognition, IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, pp. 353–362, 5 1983.
- Z. Zeng, A. Tung, J. Wang, J. Feng, and L. Zhou, Comparing stars: On approximating graph edit distance., PVLDB, vol. 2, pp. 25–36, 01 2009.
- S. Butler and J. Grout, A construction of cospectral graphs for the normalized laplacian, 2012.
- K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J. Smola, and H.-P. Kriegel, Protein function prediction via graph kernels, Bioinformatics, vol. 21, pp. i47–i56, 06 2005.