Have a personal or library account? Click to login
Exploratory Data Analysis and Supervised Learning in Plant Phenotyping Studies Cover

References

  1. R. Pieruschka and U. Schurr, Plant Phenotyping: Past, Present, and Future, Plant Phenomics, vol. 2019, p. 7507131, Mar. 2019.
  2. L. Li, Q. Zhang, and D. Huang, A Review of Imaging Techniques for Plant Phenotyping, Sensors, vol. 14, pp. 20078–20111, Nov. 2014.
  3. A. Langstroff, M. C. Heuermann, A. Stahl, and A. Junker, Opportunities and limits of controlledenvironment plant phenotyping for climate response traits, Theoretical and Applied Genetics, vol. 135, pp. 1–16, Jan. 2022.
  4. F. Loreto and S. D’Auria, How do plants sense volatiles sent by other plants?, Trends in Plant Science, vol. 27, pp. 29–38, Jan. 2022.
  5. J. Midzi, D. W. Jeffery, U. Baumann, S. Rogiers, S. D. Tyerman, and V. Pagay, Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication, Plants, vol. 11, p. 2566, Jan. 2022.
  6. M. Nascimben, M. Venturin, and L. Rimondini, Double-stage discretization approaches for biomarkerbased bladder cancer survival modeling, Communications in Applied and Industrial Mathematics, vol. 12, pp. 29–47, Jan. 2021.
  7. M. B. Pouyan and D. Kostka, Random forest based similarity learning for single cell RNA sequencing data, Bioinformatics, vol. 34, pp. i79–i88, July 2018.
  8. A. Altmann, L. Tolo¸si, O. Sander, and T. Lengauer, Permutation importance: a corrected feature importance measure, Bioinformatics, vol. 26, pp. 1340–1347, 04 2010.
  9. A. Cardellicchio, F. Solimani, G. Dimauro, A. Petrozza, S. Summerer, F. Cellini, and V. Ren‘o, Detection of tomato plant phenotyping traits using YOLOv5-based single stage detectors, Computers and Electronics in Agriculture, vol. 207, p. 107757, Apr. 2023.
  10. S. Kolhar and J. Jagtap, Plant trait estimation and classification studies in plant phenotyping using machine vision - A review, Information Processing in Agriculture, vol. 10, pp. 114–135, Mar. 2023.
  11. J. Casades´us, Y. Kaya, J. Bort, M. M. Nachit, J. L. Araus, S. Amor, G. Ferrazzano, F. Maalouf, M. Maccaferri, V. Martos, H. Ouabbou, and D. Villegas, Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments, Annals of Applied Biology, vol. 150, no. 2, pp. 227–236, 2007.
  12. P. H¨uther, N. Schandry, K. Jandrasits, I. Bezrukov, and C. Becker, ARADEEPOPSIS, an Automated Workflow for Top-View Plant Phenomics using Semantic Segmentation of Leaf States, The Plant Cell, vol. 32, pp. 3674–3688, Dec. 2020.
  13. J. Schrader, P. Shi, D. L. Royer, D. J. Peppe, R. V. Gallagher, Y. Li, R. Wang, and I. J. Wright, Leaf size estimation based on leaf length, width and shape, Annals of Botany, vol. 128, pp. 395–406, Sept. 2021.
  14. T. A. Enders, S. St. Dennis, J. Oakland, S. T. Callen, M. A. Gehan, N. D. Miller, E. P. Spalding, N. M. Springer, and C. D. Hirsch, Classifying cold-stress responses of inbred maize seedlings using RGB imaging, Plant Direct, vol. 3, no. 1, p. e00104, 2019.
  15. F. Zhu, M. Saluja, J. S. Dharni, P. Paul, S. E. Sattler, P. Staswick, H. Walia, and H. Yu, PhenoImage: An open-source graphical user interface for plant image analysis, The Plant Phenome Journal, vol. 4, no. 1, p. e20015, 2021.
  16. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, A. M¨uller, J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and ´E. Duchesnay, Scikit-learn: Machine Learning in Python, tech. rep., June 2018. arXiv:1201.0490 [cs] type: article.
  17. D. Arthur and S. Vassilvitskii, k-means++: the advantages of careful seeding, in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, USA: Society for Industrial and Applied Mathematics, Jan. 2007.
  18. K.-S. Chiang, C. H. Bock, I.-H. Lee,M. El Jarroudi, and P. Delfosse, Plant Disease Severity Assessment - How Rater Bias, Assessment Method, and Experimental Design Affect Hypothesis Testing and Resource Use Efficiency, Phytopathology, vol. 106, pp. 1451–1464, Dec. 2016.
  19. J. Zhou, J. Lu, and A. Shallah, All about Sample-Size Calculations for A/B Testing: Novel Extensions & Practical Guide, in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 3574–3583, New York, NY, USA: Association for Computing Machinery, Oct. 2023.
  20. R. R. d. Souza, A. Cargnelutti Filho, M. Toebe, and K. C. Bittencourt, Sample size and genetic divergence: a principal component analysis for soybean traits, European Journal of Agronomy, vol. 149, p. 126903, Sept. 2023.
Language: English
Page range: 69 - 90
Submitted on: Jul 22, 2024
Accepted on: Oct 21, 2024
Published on: Nov 21, 2024
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Vincenzo Schiano Di Cola, Mariachiara Cangemi, Simone Scala, Stephan Summerer, Maurilia Maria Monti, Francesco Loreto, Salvatore Cuomo, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution 4.0 License.