References
- R. Pieruschka and U. Schurr, Plant Phenotyping: Past, Present, and Future, Plant Phenomics, vol. 2019, p. 7507131, Mar. 2019.
- L. Li, Q. Zhang, and D. Huang, A Review of Imaging Techniques for Plant Phenotyping, Sensors, vol. 14, pp. 20078–20111, Nov. 2014.
- A. Langstroff, M. C. Heuermann, A. Stahl, and A. Junker, Opportunities and limits of controlledenvironment plant phenotyping for climate response traits, Theoretical and Applied Genetics, vol. 135, pp. 1–16, Jan. 2022.
- F. Loreto and S. D’Auria, How do plants sense volatiles sent by other plants?, Trends in Plant Science, vol. 27, pp. 29–38, Jan. 2022.
- J. Midzi, D. W. Jeffery, U. Baumann, S. Rogiers, S. D. Tyerman, and V. Pagay, Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication, Plants, vol. 11, p. 2566, Jan. 2022.
- M. Nascimben, M. Venturin, and L. Rimondini, Double-stage discretization approaches for biomarkerbased bladder cancer survival modeling, Communications in Applied and Industrial Mathematics, vol. 12, pp. 29–47, Jan. 2021.
- M. B. Pouyan and D. Kostka, Random forest based similarity learning for single cell RNA sequencing data, Bioinformatics, vol. 34, pp. i79–i88, July 2018.
- A. Altmann, L. Tolo¸si, O. Sander, and T. Lengauer, Permutation importance: a corrected feature importance measure, Bioinformatics, vol. 26, pp. 1340–1347, 04 2010.
- A. Cardellicchio, F. Solimani, G. Dimauro, A. Petrozza, S. Summerer, F. Cellini, and V. Ren‘o, Detection of tomato plant phenotyping traits using YOLOv5-based single stage detectors, Computers and Electronics in Agriculture, vol. 207, p. 107757, Apr. 2023.
- S. Kolhar and J. Jagtap, Plant trait estimation and classification studies in plant phenotyping using machine vision - A review, Information Processing in Agriculture, vol. 10, pp. 114–135, Mar. 2023.
- J. Casades´us, Y. Kaya, J. Bort, M. M. Nachit, J. L. Araus, S. Amor, G. Ferrazzano, F. Maalouf, M. Maccaferri, V. Martos, H. Ouabbou, and D. Villegas, Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments, Annals of Applied Biology, vol. 150, no. 2, pp. 227–236, 2007.
- P. H¨uther, N. Schandry, K. Jandrasits, I. Bezrukov, and C. Becker, ARADEEPOPSIS, an Automated Workflow for Top-View Plant Phenomics using Semantic Segmentation of Leaf States, The Plant Cell, vol. 32, pp. 3674–3688, Dec. 2020.
- J. Schrader, P. Shi, D. L. Royer, D. J. Peppe, R. V. Gallagher, Y. Li, R. Wang, and I. J. Wright, Leaf size estimation based on leaf length, width and shape, Annals of Botany, vol. 128, pp. 395–406, Sept. 2021.
- T. A. Enders, S. St. Dennis, J. Oakland, S. T. Callen, M. A. Gehan, N. D. Miller, E. P. Spalding, N. M. Springer, and C. D. Hirsch, Classifying cold-stress responses of inbred maize seedlings using RGB imaging, Plant Direct, vol. 3, no. 1, p. e00104, 2019.
- F. Zhu, M. Saluja, J. S. Dharni, P. Paul, S. E. Sattler, P. Staswick, H. Walia, and H. Yu, PhenoImage: An open-source graphical user interface for plant image analysis, The Plant Phenome Journal, vol. 4, no. 1, p. e20015, 2021.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, A. M¨uller, J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and ´E. Duchesnay, Scikit-learn: Machine Learning in Python, tech. rep., June 2018. arXiv:1201.0490 [cs] type: article.
- D. Arthur and S. Vassilvitskii, k-means++: the advantages of careful seeding, in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, USA: Society for Industrial and Applied Mathematics, Jan. 2007.
- K.-S. Chiang, C. H. Bock, I.-H. Lee,M. El Jarroudi, and P. Delfosse, Plant Disease Severity Assessment - How Rater Bias, Assessment Method, and Experimental Design Affect Hypothesis Testing and Resource Use Efficiency, Phytopathology, vol. 106, pp. 1451–1464, Dec. 2016.
- J. Zhou, J. Lu, and A. Shallah, All about Sample-Size Calculations for A/B Testing: Novel Extensions & Practical Guide, in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 3574–3583, New York, NY, USA: Association for Computing Machinery, Oct. 2023.
- R. R. d. Souza, A. Cargnelutti Filho, M. Toebe, and K. C. Bittencourt, Sample size and genetic divergence: a principal component analysis for soybean traits, European Journal of Agronomy, vol. 149, p. 126903, Sept. 2023.