References
- P. Appell and F. Kampé, Fonctions Hypergéométriques et Hypersphériques Polynomes d ′Hermite. Gautier Villars, 1926.
- R. Tremblay, S. Gaboury, and B. Fugére, Some new classes of generalized Apostol–Euler and Apostol-Genocchi polynomials, International Journal of Mathematics and Mathematical Sciences, vol. 2012, pp. 1–14, 2012.
- R. Tremblay, S. Gaboury, and B. Fugére, A further generalization of Apostol-Bernoulli polynomials and related polynomials, Honam Mathematical Journal, vol. 34, no. 3, pp. 311–326, 2012.
- C. Cesarano, G. Cennamo, and L. Placidi, Humbert polynomials and functions in terms of Hermite polynomials towards applications to wave propagation, Wseas Transactions on Mathematics, vol. 13, pp. 596–602, 2014.
- C. Cesarano and D. Assante, A note on generalized Bessel functions, International journal of mathematical models and methods in applied sciences, vol. 7, no. 6, pp. 625–629, 2013.
- C. Cesarano, B. Germano, and P. Ricci, Laguerre-type Bessel functions, Integral Transforms and Special Functions, vol. 16, no. 4, pp. 315–322, 2005.
- G. Dattoli and C. Cesarano, On a new family of Hermite polynomials associated to parabolic cylinder functions, Applied Mathematics and Computation, vol. 141, no. 1, pp. 143–149, 2003.
- D. Lim, Some identities of degenerate Genocchi polynomials, Bulletin of the Korean Mathematical Society, vol. 53, no. 2, pp. 569–579, 2016.
- K. Subuhi, N. Tabinda, and R. Mumtaz, Degenerate Apostol-type polynomials and applications, Boletín de la Sociedad Matemática Mexicana, vol. 25, no. 1, pp. 509–528, 2018.
- L. Andrews, Special functions for Engineers and Applied Mathematicians. Macmillan, 1985.
- W. Ramírez, A. Urieles, R. Herrera, and M. Ortega, New family of Bernoulli-type polynomials and some application, Dolomites Research Notes on Approximation, vol. 16, no. 1, pp. 1–11, 2023.
- D. Bedoya, C. Cesarano, W. Ramírez, and S. Díaz, New classes of degenerate unified polynomials, Axioms, vol. 12, no. 1, pp. 1–10, 2023.
- D. Bedoya, C. Cesarano, W. Ramírez, and L. Castilla, A new class of degenerate biparametric Apostol-type polynomials, Dolomites Research Notes on Approximation, vol. 16, no. 1, pp. 10–19, 2023.
- C. Cesarano and W. Ramírez, Some new classes of degenerated generalized Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials, Carpathian Mathematical Publications, vol. 14, no. 2, pp. 1–10, 2022.
- C. Cesarano, W. Ramírez, and S. Khan, A new class of degenerate Apostol–type Hermite polynomials and applications, Dolomites Research Notes on Approximation, vol. 15, no. 1, pp. 1–10, 2022.
- C. Cesarano, W. Ramírez, S. Díaz, A. Shamaoon, and W. Khan, On Apostol–type Hermite degenerated polynomials, Mathematics, vol. 11, no. 8, pp. 1–13, 2023.
- F. Costabile and E. Longo, A determinantal approach to Appell polynomials, Journal of Computational and Applied Mathematics, vol. 234, no. 5, pp. 1528–1542, 2010.
- J. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta Mathematica, vol. 73, pp. 33–366, 941.
- G. Dattoli, Hermite-bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, Advanced Special functions and applications, vol. 1, no. 2000, pp. 147–164, 1999.
- G. Dattoli, Generalized polynomials, operational identities and their applications, Journal of Computational and Applied Mathematics, vol. 118, no. 1, pp. 111–123, 2000.
- M. Zayed, S. Wani, and A. Mahnashi, Certain properties and characterizations of multivariable Hermite-Based Appell polynomials via factorization method, Fractal and Fractional, vol. 7, no. 8, p. 605, 2023.
- R. Alyusof and S. S.A Wani, Several characterizations of δ h-doped special polynomials associated with Appell sequences, Symmetry, vol. 15, no. 7, p. 1315, 2023.
- B. Alkahtani, T. Saad, I. Alazman, and S. Wani, Some families of differential equations associated with multivariate Hermite polynomials, Fractal and Fractional, vol. 7, no. 5, p. 390, 2023.