References
- D. Lannes, Modeling shallow water waves, Nonlinearity, vol. 33, no. 5, pp. R1–R57, 2020.
- S. M. Griffies, Fundamentals of ocean climate models. Princeton University Press, Princeton, NJ, 2004. With a foreword by Trevor J. McDougall.
- D. J. Benney, Some properties of long nonlinear waves, Stud. Appl. Math, no. 52, pp. 45–50, 1973.
- V. Zakharov, Benney equations and quasiclassical approximation in the method of the inverse problem, Funct. Anal. Appl., vol. 14, pp. 89–98, 1980.
- V. Zakharov, On the Benney equations, Physica D: Nonlinear Phenomena, vol. 3, pp. 193–202, 1981.
- D. Han-Kwan and F. Rousset, Quasineutral limit for Vlasov-Poisson with Penrose stable data, Ann. Sci.Éc. Norm. Supér. (4), vol. 49, no. 6, pp. 1445–1495, 2016.
- B. Di Martino, C. El Hassanieh, E. Godlewski, J. Guillod, and J. Sainte-Marie, Hyperbolicity of a semi-lagrangian formulation of the hydrostatic free-surface Euler system, arXiv preprint arXiv:2308.15083, 2023.
- V. Teshukov, On the hyperbolicity of long wave equations, Internat. Ser. Numer. Math., pp. 413–421, 1991.
- V. Teshukov, On Cauchy problem for long wave equations, Internat. Ser. Numer. Math., pp. 331–338, 1992.
- E. Knyazeva and A. A. Chesnokov, Stability criterion of shear fluid flow and the hyperbolicity of the long-wave equations, J. Appl. Mech. Tech. Phys., vol. 53, no. 5, pp. 657–663, 2012.
- A. A. Chesnokov, G. A. El, S. L. Gavrilyuk, and M. V. Pavlov, Stability of shear shallow water flows with free surface, SIAM J. Appl. Math., vol. 77, no. 3, pp. 1068–1087, 2017.
- Y. Brenier, Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math., vol. 127, no. 7, pp. 585–595, 2003.
- E. Grenier, On the derivation of homogeneous hydrostatic equations, M2AN Math. Model. Numer. Anal., vol. 33, no. 5, pp. 965–970, 1999.
- N. Masmoudi and T. Wong, On the Hs theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., vol. 204, no. 1, pp. 231–271, 2012.
- T. Gallay, Stability of vortices in ideal fluids: the legacy of Kelvin and Rayleigh, in Hyperbolic problems: theory, numerics, applications, vol. 10 of AIMS Ser. Appl. Math., pp. 42–59, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2020.
- D. Gérard-Varet and T. Nguyen, Remarks on the ill-posedness of the Prandtl equation, Asymptot. Anal., vol. 77, no. 1-2, pp. 71–88, 2012.
- C. Collot, S. Ibrahim, and Q. Lin, Stable singularity formation for the inviscid primitive equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, vol. 41, no. 2, pp. 317–356, 2023.
- Y. Brenier, Comparaison du régime hydrostatique des fluides incompressibles non-visqueux et du régime quasineutre des plasmas, in Trends in applications of mathematics to mechanics (Nice, 1998), vol. 106 of Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., pp. 285–292, 2000.
- Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations, Comm. Pure Appl. Math., vol. 52, no. 4, pp. 411–452, 1999.
- P. R. Gent and J.-C. McWilliams, Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., no. 1, pp. 591–609, 1990.
- B. Desjardins, D. Lannes, and J.-C. Saut, Normal mode decomposition and dispersive and nonlinear mixing in stratified fluids, Water Waves, vol. 3, no. 1, pp. 153–192, 2021.
- T. Fradin, Well-posedness of the Euler equations in a stably stratified ocean in isopycnal coordinates, arXiv preprint arXiv:2406.13263, 2024.
- R. Bianchini and V. Duchêne, On the hydrostatic limit of stably stratified fluids with isopycnal diffusivity, Comm. Partial Differential Equations in press. Available at arXiv:2206.01058., 2024.
- J. W. Miles, On the stability of heterogeneous shear flows, Journal of Fluid Mechanics, vol. 10, no. 4, pp. 496–508, 1961.
- L. N. Howard, Note on a paper of John W. Miles, J. Fluid Mech., no. 4, pp. 509–512, 1961.
- J. Bedrossian, R. Bianchini, M. Coti Zelati, and M. Dolce, Nonlinear inviscid damping and shear-buoyancy instability in the two-dimensional Boussinesq equations, Comm. Pure Appl. Math., vol. 76, no. 12, pp. 3685–3768, 2023.
- G. K. Vallis, Atmospheric and oceanic fluid dynamics: Fundamentals and large-scale circulation, Cambridge University Press, 2017.
- T. Elgindi and K. Widmayer, Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-geostrophic and inviscid boussinesq systems, SIAM J. Math. Anal, vol. 47, no. 6, pp. 4672–4684, 2015.
- M. Coti Zelati and M. Nualart, Limiting absorption principles and linear inviscid damping in the Euler-Boussinesq system in the periodic channel, arXiv preprint arXiv:2309.08445, 2023.
- R. Bianchini, M. Coti Zelati, and L. Ertzbischoff, Ill-posedness of the hydrostatic Euler-Boussinesq equations and failure of hydrostatic limit, arXiv preprint arXiv:2403.17857, 2024.
- D. Han-Kwan and M. Hauray, Stability issues in the quasineutral limit of the one-dimensional vlasov-poisson equation, Comm. Math. Phys, vol. 334, no. 2, pp. 1101–1152, 2015.
- D. Han-Kwan and T. T. Nguyen, Ill-posedness of the hydrostatic Euler and singular Vlasov equations, Arch. Ration. Mech. Anal., vol. 221, no. 3, pp. 1317–1344, 2016.
- E. Grenier, On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math., vol. 53, no. 9, pp. 1067–1091, 2000.
- S. Friedlander, On nonlinear instability and stability for stratified shear flow, J. Math. Fluid Mech., vol. 3, no. 1, pp. 82–97, 2001.
- M. N. Rosenbluth, Necessary and sufficient condition for the stability of plane parallel inviscid flow, Internat. Ser. Numer. Math., vol. 7, no. 4, pp. 413–421, 1964.
- M. Renardy, Ill-posedness of the hydrostatic Euler and Navier-Stokes equations, Arch. Ration. Mech. Anal., vol. 194, no. 3, pp. 877–886, 2009.
- A.-L. Dalibard, H. Dietert, D. Gérard-Varet, and F. Marbach, High frequency analysis of the unsteady interactive boundary layer model, SIAM J. Math. Anal., vol. 50, no. 4, pp. 4203–4245, 2018.
- P. Korn and E. S. Titi, Global well-posedness of the primitive equations of large-scale ocean dynamics with the gent- mcwilliams-redi eddy parametrization model, arXiv preprint arXiv:2304.03242, 2023.
- M. Adim, R. Bianchini, and V. Duchêne, Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems, Compt. Rend. Math. (in press), 2024.
- P. R. Gent, The energetically consistent shallow-water equations, Journal of the atmospheric sciences, vol. 50, no. 9, pp. 1323–1325, 1993.
- D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., vol. 238, no. 1-2, pp. 211–223, 2003.