Have a personal or library account? Click to login
Mathematical Insights into Hydrostatic Modeling of Stratified Fluids Cover

Mathematical Insights into Hydrostatic Modeling of Stratified Fluids

Open Access
|Sep 2024

References

  1. D. Lannes, Modeling shallow water waves, Nonlinearity, vol. 33, no. 5, pp. R1–R57, 2020.
  2. S. M. Griffies, Fundamentals of ocean climate models. Princeton University Press, Princeton, NJ, 2004. With a foreword by Trevor J. McDougall.
  3. D. J. Benney, Some properties of long nonlinear waves, Stud. Appl. Math, no. 52, pp. 45–50, 1973.
  4. V. Zakharov, Benney equations and quasiclassical approximation in the method of the inverse problem, Funct. Anal. Appl., vol. 14, pp. 89–98, 1980.
  5. V. Zakharov, On the Benney equations, Physica D: Nonlinear Phenomena, vol. 3, pp. 193–202, 1981.
  6. D. Han-Kwan and F. Rousset, Quasineutral limit for Vlasov-Poisson with Penrose stable data, Ann. Sci.Éc. Norm. Supér. (4), vol. 49, no. 6, pp. 1445–1495, 2016.
  7. B. Di Martino, C. El Hassanieh, E. Godlewski, J. Guillod, and J. Sainte-Marie, Hyperbolicity of a semi-lagrangian formulation of the hydrostatic free-surface Euler system, arXiv preprint arXiv:2308.15083, 2023.
  8. V. Teshukov, On the hyperbolicity of long wave equations, Internat. Ser. Numer. Math., pp. 413–421, 1991.
  9. V. Teshukov, On Cauchy problem for long wave equations, Internat. Ser. Numer. Math., pp. 331–338, 1992.
  10. E. Knyazeva and A. A. Chesnokov, Stability criterion of shear fluid flow and the hyperbolicity of the long-wave equations, J. Appl. Mech. Tech. Phys., vol. 53, no. 5, pp. 657–663, 2012.
  11. A. A. Chesnokov, G. A. El, S. L. Gavrilyuk, and M. V. Pavlov, Stability of shear shallow water flows with free surface, SIAM J. Appl. Math., vol. 77, no. 3, pp. 1068–1087, 2017.
  12. Y. Brenier, Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math., vol. 127, no. 7, pp. 585–595, 2003.
  13. E. Grenier, On the derivation of homogeneous hydrostatic equations, M2AN Math. Model. Numer. Anal., vol. 33, no. 5, pp. 965–970, 1999.
  14. N. Masmoudi and T. Wong, On the Hs theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., vol. 204, no. 1, pp. 231–271, 2012.
  15. T. Gallay, Stability of vortices in ideal fluids: the legacy of Kelvin and Rayleigh, in Hyperbolic problems: theory, numerics, applications, vol. 10 of AIMS Ser. Appl. Math., pp. 42–59, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2020.
  16. D. Gérard-Varet and T. Nguyen, Remarks on the ill-posedness of the Prandtl equation, Asymptot. Anal., vol. 77, no. 1-2, pp. 71–88, 2012.
  17. C. Collot, S. Ibrahim, and Q. Lin, Stable singularity formation for the inviscid primitive equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, vol. 41, no. 2, pp. 317–356, 2023.
  18. Y. Brenier, Comparaison du régime hydrostatique des fluides incompressibles non-visqueux et du régime quasineutre des plasmas, in Trends in applications of mathematics to mechanics (Nice, 1998), vol. 106 of Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., pp. 285–292, 2000.
  19. Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations, Comm. Pure Appl. Math., vol. 52, no. 4, pp. 411–452, 1999.
  20. P. R. Gent and J.-C. McWilliams, Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., no. 1, pp. 591–609, 1990.
  21. B. Desjardins, D. Lannes, and J.-C. Saut, Normal mode decomposition and dispersive and nonlinear mixing in stratified fluids, Water Waves, vol. 3, no. 1, pp. 153–192, 2021.
  22. T. Fradin, Well-posedness of the Euler equations in a stably stratified ocean in isopycnal coordinates, arXiv preprint arXiv:2406.13263, 2024.
  23. R. Bianchini and V. Duchêne, On the hydrostatic limit of stably stratified fluids with isopycnal diffusivity, Comm. Partial Differential Equations in press. Available at arXiv:2206.01058., 2024.
  24. J. W. Miles, On the stability of heterogeneous shear flows, Journal of Fluid Mechanics, vol. 10, no. 4, pp. 496–508, 1961.
  25. L. N. Howard, Note on a paper of John W. Miles, J. Fluid Mech., no. 4, pp. 509–512, 1961.
  26. J. Bedrossian, R. Bianchini, M. Coti Zelati, and M. Dolce, Nonlinear inviscid damping and shear-buoyancy instability in the two-dimensional Boussinesq equations, Comm. Pure Appl. Math., vol. 76, no. 12, pp. 3685–3768, 2023.
  27. G. K. Vallis, Atmospheric and oceanic fluid dynamics: Fundamentals and large-scale circulation, Cambridge University Press, 2017.
  28. T. Elgindi and K. Widmayer, Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-geostrophic and inviscid boussinesq systems, SIAM J. Math. Anal, vol. 47, no. 6, pp. 4672–4684, 2015.
  29. M. Coti Zelati and M. Nualart, Limiting absorption principles and linear inviscid damping in the Euler-Boussinesq system in the periodic channel, arXiv preprint arXiv:2309.08445, 2023.
  30. R. Bianchini, M. Coti Zelati, and L. Ertzbischoff, Ill-posedness of the hydrostatic Euler-Boussinesq equations and failure of hydrostatic limit, arXiv preprint arXiv:2403.17857, 2024.
  31. D. Han-Kwan and M. Hauray, Stability issues in the quasineutral limit of the one-dimensional vlasov-poisson equation, Comm. Math. Phys, vol. 334, no. 2, pp. 1101–1152, 2015.
  32. D. Han-Kwan and T. T. Nguyen, Ill-posedness of the hydrostatic Euler and singular Vlasov equations, Arch. Ration. Mech. Anal., vol. 221, no. 3, pp. 1317–1344, 2016.
  33. E. Grenier, On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math., vol. 53, no. 9, pp. 1067–1091, 2000.
  34. S. Friedlander, On nonlinear instability and stability for stratified shear flow, J. Math. Fluid Mech., vol. 3, no. 1, pp. 82–97, 2001.
  35. M. N. Rosenbluth, Necessary and sufficient condition for the stability of plane parallel inviscid flow, Internat. Ser. Numer. Math., vol. 7, no. 4, pp. 413–421, 1964.
  36. M. Renardy, Ill-posedness of the hydrostatic Euler and Navier-Stokes equations, Arch. Ration. Mech. Anal., vol. 194, no. 3, pp. 877–886, 2009.
  37. A.-L. Dalibard, H. Dietert, D. Gérard-Varet, and F. Marbach, High frequency analysis of the unsteady interactive boundary layer model, SIAM J. Math. Anal., vol. 50, no. 4, pp. 4203–4245, 2018.
  38. P. Korn and E. S. Titi, Global well-posedness of the primitive equations of large-scale ocean dynamics with the gent- mcwilliams-redi eddy parametrization model, arXiv preprint arXiv:2304.03242, 2023.
  39. M. Adim, R. Bianchini, and V. Duchêne, Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems, Compt. Rend. Math. (in press), 2024.
  40. P. R. Gent, The energetically consistent shallow-water equations, Journal of the atmospheric sciences, vol. 50, no. 9, pp. 1323–1325, 1993.
  41. D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., vol. 238, no. 1-2, pp. 211–223, 2003.
Language: English
Page range: 86 - 105
Submitted on: Jun 28, 2024
Accepted on: Jul 15, 2024
Published on: Sep 26, 2024
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Roberta Bianchini, Lucas Ertzbischoff, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution 4.0 License.