Have a personal or library account? Click to login
Exploration of Kernel Parameters in Signal GBF-PUM Approximation on Graphs Cover

Exploration of Kernel Parameters in Signal GBF-PUM Approximation on Graphs

By: R. Cavoretto,  A. De Rossi and  S. Mereu  
Open Access
|Jul 2024

References

  1. A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst, Graph signal processing: Overview, challenges, and applications, Proceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.
  2. I. Z. Pesenson and M. Z. Pesenson, Graph signal sampling and interpolation based on clusters and averages, Journal of Fourier Analysis and Applications, vol. 27, no. 39, 2021.
  3. I. Z. Pesenson, Sampling in Paley-Wiener spaces on combinatorial graphs, Transactions of the American Mathematical Society, vol. 360, no. 10, 2008.
  4. R. S. Strichartz, Half sampling on bipartite graphs, Journal of Fourier Analysis and Applications, vol. 22, p. 1157–1173, 2016.
  5. X. Wang, P. Liu, and Y. Gu, Local-set-based graph signal reconstruction, IEEE Transactions on Signal Processing, vol. 63, no. 9, pp. 2432 – 2444, 2015.
  6. J. P. Ward, F. J. Narcowich, and J. D. Ward, Interpolating splines on graphs for data science applications, Applied and Computational Harmonic Analysis, vol. 49, no. 2, pp. 540—-557, 2020.
  7. X. Wang, J. Chen, and Y. Gu, Local measurement and reconstruction for noisy bandlimited graph signals, Signal Processing, vol. 129, pp. 119–129, 2016.
  8. I. D. Irawati, A. B. Suksmono, and I. J. M. Edward, An interpolation comparative analysis for missing internet traffic data, in Proceedings of the 3rd International Conference on Electronics, Communications and Control Engineering, p. 26–30, New York, NY, USA: Association for Computing Machinery, 2020.
  9. H. Katayama, S. Yasuda, and T. Fuse, Comparative validation of spatial interpolation methods for traffic density for data-driven travel-time prediction, International Journal of Intelligent Transportation Systems Research, vol. 20, pp. 830–837, 2022.
  10. R. Cavoretto, A. De Rossi, and W. Erb, Partition of unity methods for signal processing on graphs, Journal of Fourier Analysis and Applications, vol. 27, no. 66, pp. 342–346, 2021.
  11. R. Cavoretto, A. De Rossi, S. Lancellotti, and F. Romaniello, Node-bound communities for partition of unity interpolation on graphs, Applied Mathematics and Computation, vol. 467, p. 128502, 2024.
  12. N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society, vol. 68, pp. 337–404, 1950.
  13. W. Erb, Graph signal interpolation with positive definite graph basis functions, Applied and Computational Harmonic Analysis, vol. 60, pp. 368–395, 2022.
  14. D. Romero, M. Ma, and G. B. Giannakis, Kernel-based reconstruction of graph signals, IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 764 – 778, 2016.
  15. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, Partition of unity interpolation using stable kernel-based techniques, Applied Numerical Mathematics, vol. 116, pp. 95–107, 2017.
  16. W. Erb, Semi-supervised learning on graphs with feature-augmented graph basis functions, arXiv:2003.07646, 2020.
  17. J. P. Ward, F. J. Narcowich, and J. D. Ward, Interpolating splines on graphs for data science applications, Applied and Computational Harmonic Analysis, vol. 49, no. 2, pp. 540–577, 2020.
  18. R. Kondor and J. D. Lafferty, Diffusion kernels on graphs and other discrete input spaces, in Proc. of the 19th. International Conference on Machine Learning, ICML02, 2002.
  19. R. K. A.J. Smola, Kernels and regularization on graphs, in Lecture Notes in Computer Science(), vol 2777, Springer, Berlin, Heidelberg, 2003.
  20. L. Stankovic, M. Dakovic, and E. Sejdic, Introduction to Graph Signal Processing, pp. 3–108. Cham: Springer International Publishing, 2019.
  21. C. Godsil and G. Royle, Algebraic Graph Theory. Springer, 2001.
  22. F. Chung, Spectral Graph Theory. American Mathematical Society, 1997.
  23. W. Erb, Shapes of uncertainty in spectral graph theory, IEEE Transactions on Information Theory, vol. 67, pp. 1291–1307, 2019.
  24. G. Fasshauer, Positive definite kernels: Past, present and future, Dolomites Research Notes on Approximation, vol. 4, pp. 21–63, 2011.
  25. R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 1985.
  26. S. De Marchi and R. Schaback, Stability of kernel-based interpolation, Advances in Computational Mathematics, vol. 32, no. 2, pp. 155–161, 2010.
  27. I. Pesenson, Variational splines and Paley–Wiener spaces on combinatorial graphs, Constructive Approximation, vol. 29, pp. 1–21, 2009.
  28. M. Newman, Networks: An Introduction. Oxford University Press, 2010.
  29. T. F. Gonzalez, Clustering to minimize the maximum intercluster distance, Theoretical Computer Science — Journal, vol. 38, pp. 293–306, 1985.
  30. D. S. Hochbaum and D. B. Shmoys, A best possible heuristic for the k-center problem, Mathematics of Operations Research, vol. 10, no. 2, pp. 180–184, 1985.
  31. S. Fortunato, Community detection in graphs, Physics Reports, vol. 486, pp. 75–174, 2010.
  32. R. Cavoretto, A. De Rossi, and W. Erb, GBFPUM - a MATLAB package for partition of unity based signal interpolation and approximation on graphs, Dolomites Research Notes on Approximation, vol. 15, no. 2, pp. 25–34, 2022.
  33. R. Rossi and N. Ahmed, The network data repository with interactive graph analytics and visualization, Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, Mar. 2015.
Language: English
Page range: 66 - 85
Submitted on: May 31, 2024
Accepted on: Jun 11, 2024
Published on: Jul 17, 2024
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 R. Cavoretto, A. De Rossi, S. Mereu, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution 4.0 License.