Have a personal or library account? Click to login
Global Existence of Weak Solutions for Compresssible Navier—Stokes—Fourier Equations with the Truncated Virial Pressure Law Cover

Global Existence of Weak Solutions for Compresssible Navier—Stokes—Fourier Equations with the Truncated Virial Pressure Law

Open Access
|Jun 2023

References

  1. D. Bresch, P.–E. Jabin. Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor. Ann. of Math. (2) 188, no. 2, 577–684 (2018).
  2. D. Bresch, P.–E. Jabin. Quantitative regularity estimates for compressible transport equations. New Trends and Results in Mathematical Description of Fluid Flows. Necas Center Series, 77-113. Eds M. Bulicek, E. Feireisl, M. Pokorny. Springer Nature Switzerland AG (2018).
  3. D. Bresch, P.–E. Jabin, F. Wang. The global existence of weak solutions for compressible Navier-Stokes equations with locally Lipschitz pressure depending on time and space variable. Nonlinearity 34(6), 4115-4162 (2021).
  4. R.J. DiPerna, P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 511–547, (1989).
  5. J.D. Dymond, R.C. Wilhoit. Virial coefficients of pure gases and mixtures, Springer (2003).
  6. E. Feireisl. On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolinae 42 (1) 83-98, (2001).
  7. E. Feireisl. Dynamics of viscous compressible fluids. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.
  8. E. Feireisl, A. Novotný. Singular limits in thermodynamics of viscous fluids. Advanced in Math Fluid Mech, Birkhauser, 2017.
  9. E. Feireisl, A. Novotný, H. Petzeltová. On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3 358-392, (2001).
  10. E. Feireisl, T. Karper, M. Pokorny. Mathematical Theory of Compressible Viscous Fluids: Analysis and Numerics. Birkhauser-Verlag, Basel, 2016.
  11. E. Feireisl. Compressible Navier–Stokes Equations with a Non-Monotone Pressure Law. J. Diff. Eqs 183, no 1, 97–108, (2002).
  12. O.A. Ladyzenskaya, V.A. Solonnikov, N.N. Uraltceva. Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society (1968).
  13. J. Leray. Sur le mouvement d’un fluide visqueux remplissant l’espace, Acta Math. 63, 193–248, (1934).
  14. P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.
  15. A. Novotny, I. Straskraba. Introduction to the mathematical theory of compressible flow. Oxford Lecture Series in Mathematics and its Applications. Oxford Science publications. The Clarendon press, Oxford University press, New York, 2004.
  16. H. Kamerlingh Onnes, Expression of state of gases and liquids by means of series, KNAW Proceedings, 4, 1901-1902, Amsterdam, 125-147 (1902).
  17. P.I. Plotnikov, W. Weigant. Isothermal Navier-Stokes equations and Radon transform. SIAM J. Math. Anal. 47 no. 1, 626–653, (2015).
Language: English
Page range: 17 - 49
Submitted on: Nov 5, 2023
|
Accepted on: Jan 6, 2023
|
Published on: Jun 21, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Didier Bresch, Pierre—Emmanuel Jabin, Fei Wang, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution 4.0 License.