References
- D. Bresch, P.–E. Jabin. Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor. Ann. of Math. (2) 188, no. 2, 577–684 (2018).
- D. Bresch, P.–E. Jabin. Quantitative regularity estimates for compressible transport equations. New Trends and Results in Mathematical Description of Fluid Flows. Necas Center Series, 77-113. Eds M. Bulicek, E. Feireisl, M. Pokorny. Springer Nature Switzerland AG (2018).
- D. Bresch, P.–E. Jabin, F. Wang. The global existence of weak solutions for compressible Navier-Stokes equations with locally Lipschitz pressure depending on time and space variable. Nonlinearity 34(6), 4115-4162 (2021).
- R.J. DiPerna, P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 511–547, (1989).
- J.D. Dymond, R.C. Wilhoit. Virial coefficients of pure gases and mixtures, Springer (2003).
- E. Feireisl. On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolinae 42 (1) 83-98, (2001).
- E. Feireisl. Dynamics of viscous compressible fluids. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.
- E. Feireisl, A. Novotný. Singular limits in thermodynamics of viscous fluids. Advanced in Math Fluid Mech, Birkhauser, 2017.
- E. Feireisl, A. Novotný, H. Petzeltová. On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3 358-392, (2001).
- E. Feireisl, T. Karper, M. Pokorny. Mathematical Theory of Compressible Viscous Fluids: Analysis and Numerics. Birkhauser-Verlag, Basel, 2016.
- E. Feireisl. Compressible Navier–Stokes Equations with a Non-Monotone Pressure Law. J. Diff. Eqs 183, no 1, 97–108, (2002).
- O.A. Ladyzenskaya, V.A. Solonnikov, N.N. Uraltceva. Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society (1968).
- J. Leray. Sur le mouvement d’un fluide visqueux remplissant l’espace, Acta Math. 63, 193–248, (1934).
- P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.
- A. Novotny, I. Straskraba. Introduction to the mathematical theory of compressible flow. Oxford Lecture Series in Mathematics and its Applications. Oxford Science publications. The Clarendon press, Oxford University press, New York, 2004.
- H. Kamerlingh Onnes, Expression of state of gases and liquids by means of series, KNAW Proceedings, 4, 1901-1902, Amsterdam, 125-147 (1902).
- P.I. Plotnikov, W. Weigant. Isothermal Navier-Stokes equations and Radon transform. SIAM J. Math. Anal. 47 no. 1, 626–653, (2015).