Have a personal or library account? Click to login
Deep learning-assisted analysis of automobiles handling performances Cover

Deep learning-assisted analysis of automobiles handling performances

Open Access
|Dec 2022

References

  1. 1. T. D. Gillespie, Fundamentals of Vehicle Dynamics. Society of Automotive Engineers, 1992.10.4271/R-114
  2. 2. C. C. MacAdam, Understanding and modeling the human driver, Vehicle System Dynamics, vol. 40, pp. 101–134, 2003.10.1076/vesd.40.1.101.15875
  3. 3. G. E. Hinton, Learning multiple layers of representation, Trends in Cognitive Sciences, vol. 11, pp. 428–434, 2007.10.1016/j.tics.2007.09.00417921042
  4. 4. Y. Bengio, Learning deep architectures for AI, Foundations and Trends in Machine Learning, vol. 2, pp. 1–127, 2009.10.1561/2200000006
  5. 5. Y. Bengio, A. Courville, and P. Vincent, Representation learning: a review and new perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, pp. 1798–1828, 2012.10.1109/TPAMI.2013.50
  6. 6. W. Dong, J. Li, R. Yao, C. Li, T. Yuan, and L. Wang, Characterizing driving styles with deep learning, CoRR, 2016.
  7. 7. W. Dong, T. Yuan, K. Yang, C. Li, and S. Zhang, Autoencoder regularized network for driving style representation learning, CoRR, 2017.10.24963/ijcai.2017/222
  8. 8. G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, vol. 313, pp. 504–507, 2006.10.1126/science.112764716873662
  9. 9. P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, Extracting and composing robust features with denoising autoencoders, in Proceedings of the 25th International Conference on Machine Learning, ACM, 2008.10.1145/1390156.1390294
  10. 10. D. Bahdanau, K. H. Cho, and Y. Bengio, Neural machine translation by jointly learning to align and translate, CoRR, 2014.
  11. 11. K. Simonyan, A. Vedaldi, and A. Zisserman, Deep inside convolutional neural networks: visualizing image classification models and saliency maps, CoRR, 2013.
  12. 12. E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, Dimensionality reduction for fast similarity search in large time series databases, Knowledge and Information Systems, vol. 3, pp. 263–286, 2001.10.1007/PL00011669
  13. 13. J. Lin, E. Keogh, L. Wei, and S. Lonardi, Experiencing SAX: a novel symbolic representation of time series, Data Mining and Knowledge Discovery, vol. 15, pp. 107–144, 2007.10.1007/s10618-007-0064-z
  14. 14. J. Lin, E. Keogh, S. Lonardi, J. P. Lankford, and D. M. Nystrom, VizTree: a tool for visually mining and monitoring massive time series databases, in Proceedings of the 30th Annual International Conference on Very Large Data Bases, Springer, 2004.10.1016/B978-012088469-8/50124-8
  15. 15. M. Hein and J.-Y. Audibert, Intrinsic dimensionality estimation of submanifolds in ℝd, in Proceedings of the 22nd International Conference on Machine Learning, ACM, 2005.10.1145/1102351.1102388
  16. 16. D. P. Kingma and J. L. Ba, Adam: a method for stochastic optimization, CoRR, 2014.
  17. 17. Z. Yang, D. Yang, C. Dyer, X. He, A. J. Smola, and E. H. Hovy, Hierarchical attention networks for document classification, in Proceedings of the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, 2016.10.18653/v1/N16-1174
  18. 18. VI-grade. https://www.vi-grade.com/, 2018.
  19. 19. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: large-scale machine learning on heterogeneous systems. http://tensorflow.org/, 2015.
  20. 20. R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), ACM, 1995.
  21. 21. L. Breiman, Randomizing outputs to increase prediction accuracy, Machine Learning, vol. 40, pp. 229–242, 1998.10.1023/A:1007682208299
  22. 22. L. Pappalardo, P. Cintia, D. Pedreschi, F. Giannotti, and A. L. Barabási, Human perception of performance, CoRR, 2017.
Language: English
Page range: 78 - 95
Submitted on: Apr 26, 2022
|
Accepted on: Nov 9, 2022
|
Published on: Dec 24, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Davide Sapienza, Davide Paganelli, Marco Prato, Marko Bertogna, Matteo Spallanzani, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution 4.0 License.