Have a personal or library account? Click to login
Virtual Element Methods for three-dimensional Hellinger-Reissner elastostatic problems Cover

Virtual Element Methods for three-dimensional Hellinger-Reissner elastostatic problems

Open Access
|Oct 2022

References

  1. 1. L. Beir˜ao da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, Basic principles of Virtual Element Methods, Mathematical Models and Methods in Applied Sciences, vol. 23, pp. 119–214, 2013.10.1142/S0218202512500492
  2. 2. L. Beir˜ao da Veiga, K. Lipnikov, and G. Manzini, The mimetic finite difference method for elliptic problems, vol. 11 of Modeling, Simulation and Applications. Springer, 2014.10.1007/978-3-319-02663-3
  3. 3. D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013.10.1007/978-3-642-36519-5
  4. 4. E. Artioli, S. de Miranda, C. Lovadina, and L. Patruno, A stress/displacement virtual element method for plane elasticity problems, Comp. Methods Appl. Mech. Engrg., vol. 325, pp. 155–174, 2017.10.1016/j.cma.2017.06.036
  5. 5. E. Artioli, S. de Miranda, C. Lovadina, and L. Patruno, A family of virtual element methods for plane elasticity problems based on the hellinger-reissner principle, Comp. Methods Appl. Mech. Engrg., vol. 340, pp. 978–999, 2018.10.1016/j.cma.2018.06.020
  6. 6. M. Visinoni, A family of three-dimensional virtual elements for hellinger-reissner elasticity problems, in preparation.
  7. 7. B. F. De Veubeke and O. C. Zienkiewicz, Displacement and equilibrium models in the finite element method, International Journal for Numerical Methods in Engineering, vol. 52, no. 3, pp. 287–342, 2001.10.1002/nme.339
  8. 8. D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 19, pp. 7–32, 1985.10.1051/m2an/1985190100071
  9. 9. F. Dassi, C. Lovadina, and M. Visinoni, A three-dimensional Hellinger-Reissner virtual element method for linear elasticity problems, Computer Methods in Applied Mechanics and Engineering, vol. 364, p. 112910, 2020.10.1016/j.cma.2020.112910
  10. 10. D. Braess, Finite elements. Theory, fast solvers, and applications in elasticity theory. Cambridge University Press, third ed., 2007.10.1017/CBO9780511618635
  11. 11. D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numerische Mathematik, vol. 92, pp. 401–419, 2002.10.1007/s002110100348
  12. 12. D. N. Arnold, G. Awanou, and R. Winther, Finite elements for symmetric tensors in three dimensions, Mathematics of Computation, vol. 77, pp. 1229–1251, 2008.10.1090/S0025-5718-08-02071-1
  13. 13. L. Beir˜ao da Veiga, F. Brezzi, L. D. Marini, and A. Russo, The hitchhiker’s guide to the virtual element method, Mathematical Models and Methods in Applied Sciences, vol. 24, no. 8, pp. 1541–1573, 2014.10.1142/S021820251440003X
  14. 14. F. Dassi, C. Lovadina, and M. Visinoni, Hybridization of the virtual element method for linear elasticity problems, Mathematical Models and Methods in Applied Sciences, vol. 31, no. 14, pp. 2979–3008, 2021.10.1142/S0218202521500676
  15. 15. B. Ayuso, K. Lipnikov, and G. Manzini, The nonconforming virtual element method, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 50, no. 3, pp. 879–904, 2016.10.1051/m2an/2015090
  16. 16. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelmanm, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Web page. https://www.mcs.anl.gov/petsc, 2019.
  17. 17. L. Beir˜ao da Veiga, F. Brezzi, and L. D. Marini, Virtual Elements for linear elasticity problems, SIAM J. Numer. Anal., vol. 51, pp. 794–812, 2013.10.1137/120874746
  18. 18. L. Beir˜ao da Veiga, C. Lovadina, and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 51, no. 2, pp. 509–535, 2017.10.1051/m2an/2016032
  19. 19. L. Beir˜ao da Veiga, D. Mora, and G. Vacca, The Stokes complex for virtual elements with application to Navier-Stokes flows, Journal of Scientific Computing, vol. 81, no. 2, pp. 990–1018, 2019.10.1007/s10915-019-01049-3
  20. 20. D. Arnold, Finite Element Exterior Calculus, vol. 93 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 2018.10.1137/1.9781611975543
  21. 21. D. Arnold, D. Boffi, and F. Bonizzoni, Finite element differential forms on curvilinear cubic meshes and their approximation properties, Numerische Mathematik, vol. 129, no. 1, pp. 1–20, 2015.10.1007/s00211-014-0631-3
  22. 22. F. Bonizzoni and G. Kanschat, H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes, Calcolo, vol. 58, no. 18, 2021.10.1007/s10092-021-00409-6859168434803174
Language: English
Page range: 57 - 69
Submitted on: Jul 30, 2022
|
Accepted on: Sep 30, 2022
|
Published on: Oct 22, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Carlo Lovadina, Michele Visinoni, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution 4.0 License.