Have a personal or library account? Click to login
High order Finite Difference/Discontinuous Galerkin schemes for the incompressible Navier-Stokes equations with implicit viscosity Cover

High order Finite Difference/Discontinuous Galerkin schemes for the incompressible Navier-Stokes equations with implicit viscosity

Open Access
|Jun 2022

References

  1. 1. E. Ferrer and R. Willden, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer, vol. 15, pp. 1787–1806, 1972.
  2. 2. C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Computers and Fluids, vol. 1, pp. 73–100, 1973.10.1016/0045-7930(73)90027-3
  3. 3. A. Brooks and T. Hughes, Stream-line upwind/Petrov Galerkin formulstion for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation, Computer Methods in Applied Mechanics and Engineering, vol. 32, pp. 199–259, 1982.10.1016/0045-7825(82)90071-8
  4. 4. T. Hughes, M. Mallet, and M. Mizukami, A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Computer Methods in Applied Mechanics and Engineering, vol. 54, pp. 341–355, 1986.10.1016/0045-7825(86)90110-6
  5. 5. M. Fortin, Old and new finite elements for incompressible flows, International Journal for Numerical Methods in Fluids, vol. 1, pp. 347–364, 1981.10.1002/fld.1650010406
  6. 6. R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II, Numerische Mathematik, vol. 59, pp. 615–636, 1991.10.1007/BF01385799
  7. 7. J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes Problem. I. Regularity of solutions and second order error estimates for spatial discretization, SIAM Journal on Numerical Analysis, vol. 19, pp. 275–311, 1982.10.1137/0719018
  8. 8. J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes Problem. III. Smoothing property and higher order error estimates for spatial discretization, SIAM Journal on Numerical Analysis, vol. 25, pp. 489–512, 1988.10.1137/0725032
  9. 9. F. Harlow and J. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Physics of Fluids, vol. 8, pp. 2182–2189, 1965.10.1063/1.1761178
  10. 10. V. Patankar and B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer, vol. 15, pp. 1787–1806, 1972.10.1016/0017-9310(72)90054-3
  11. 11. S. Patankar, Numerical heat transfer and fluid flow. New York: McGraw-Hill, 1980.
  12. 12. J. van Kan, A second-order accurate pressure correction method for viscous incompressible flow, SIAM Journal on Scientific and Statistical Computing, vol. 7, pp. 870–891, 1986.10.1137/0907059
  13. 13. F. Bassi, A. Crivellini, D. D. Pietro, and S. Rebay, An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows, Computers and Fluids, vol. 36, pp. 1529–1546, 2007.10.1016/j.compfluid.2007.03.012
  14. 14. K. Shahbazi, P. F. Fischer, and C. R. Ethier, A high-order discontinuous galerkin method for the unsteady incompressible navier-stokes equations, Journal of Computational Physics, vol. 222, pp. 391–407, 2007.10.1016/j.jcp.2006.07.029
  15. 15. E. Ferrer and R. Willden, A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier-Stokes equations, Computer and Fluids, vol. 46, pp. 224–230, 2011.10.1016/j.compfluid.2010.10.018
  16. 16. N. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, Journal of Computational Physics, vol. 230, pp. 1147–1170, 2011.10.1016/j.jcp.2010.10.032
  17. 17. S. Rhebergen and B. Cockburn, A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, Journal of Computational Physics, vol. 231, pp. 4185–4204, 2012.10.1016/j.jcp.2012.02.011
  18. 18. S. Rhebergen, B. Cockburn, and J. J. van der Vegt, A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations, Journal of Computational Physics, vol. 233, pp. 339–358, 2013.10.1016/j.jcp.2012.08.052
  19. 19. A. Crivellini, V. D’Alessandro, and F. Bassi, High-order discontinuous Galerkin solutions of three-dimensional incompressible RANS equations, Computers and Fluids, vol. 81, pp. 122–133, 2013.10.1016/j.compfluid.2013.04.016
  20. 20. B. Klein, F. Kummer, and M. Oberlack, A SIMPLE based discontinuous Galerkin solver for steady incompressible flows, Journal of Computational Physics, vol. 237, pp. 235–250, 2013.10.1016/j.jcp.2012.11.051
  21. 21. A. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of Computational Physics, vol. 2, pp. 12–26, 1967.10.1016/0021-9991(67)90037-X
  22. 22. F. Bassi, A. Crivellini, D. D. Pietro, and S. Rebay, On a robust discontinuous Galerkin technique for the solution of compressible flow, Journal of Computational Physics, vol. 218, pp. 208–221, 2006.10.1016/j.jcp.2006.03.006
  23. 23. V. Casulli, Semi-implicit finite difference methods for the two–dimensional shallow water equations, J. Comp. Phys., vol. 86, pp. 56–74, 1990.10.1016/0021-9991(90)90091-E
  24. 24. V. Casulli and R. Cheng, Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Methods Fluids, vol. 15, pp. 629–648, 1992.10.1002/fld.1650150602
  25. 25. M. Tavelli and M. Dumbser, A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes, J. Comp. Phys., vol. 319, pp. 294–323, 2016.10.1016/j.jcp.2016.05.009
  26. 26. U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., vol. 25, pp. 151–167, 1982.10.1016/S0168-9274(97)00056-1
  27. 27. S. Boscarino and L. Pareschi, On the asymptotic properties of IMEX Runge-Kutta schemes for hyperbolic balance laws, Journal of Computational and Applied Mathematics, vol. 316, pp. 60–73, 2017.10.1016/j.cam.2016.08.027
  28. 28. S. Boscarino and G. Russo, On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation, SIAM J. Sci. Comput., vol. 31, pp. 1926–1945, 2009.10.1137/080713562
  29. 29. L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., vol. 25, pp. 129–155, 2005.10.1007/s10915-004-4636-4
  30. 30. S. Boscarino, L. Pareschi, and G. Russo, A unified IMEX Runge-Kutta approach for hyperbolic systems with multiscale relaxation, SIAM J. Numer. Anal., vol. 55, no. 4, pp. 2085–2109, 2017.10.1137/M1111449
  31. 31. W. Boscheri, G. Dimarco, R. Loubère, M. Tavelli, and M. Vignal, A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations, J. Comp. Phys., vol. 415, p. 109486, 2020.10.1016/j.jcp.2020.109486
  32. 32. W. Boscheri, G. Dimarco, and M. Tavelli, An efficient second order all Mach finite volume solver for the compressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol. 374, p. 113602, 2021.10.1016/j.cma.2020.113602
  33. 33. V. DeCaria and M. Schneier, An embedded variable step IMEX scheme for the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol. 376, p. 113661, 2021.10.1016/j.cma.2020.113661
  34. 34. F. Meng, J. Banks, W. Henshaw, and D. Schwendeman, Fourth-order accurate fractional-step IMEX schemes for the incompressible Navier-Stokes equations on moving overlapping grids, Computer Methods in Applied Mechanics and Engineering, vol. 366, p. 113040, 2020.10.1016/j.cma.2020.113040
  35. 35. W. Wang, Z. Wang, and M. Mao, Linearly implicit variable step-size BDF schemes with Fourier pseudospectral approximation for incompressible Navier-Stokes equations, Applied Numerical Mathematics, vol. 172, pp. 393–412, 2022.10.1016/j.apnum.2021.10.019
  36. 36. A. Larios, L. G. Rebholz, and C. Zerfas, Global in time stability and accuracy of imex-fem data assimilation schemes for navier-stokes equations, Computer Methods in Applied Mechanics and Engineering, vol. 345, pp. 1077–1093, 2019.10.1016/j.cma.2018.09.004
  37. 37. W. Boscheri and L. Pareschi, High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers, J. Comp. Phys., vol. 434, p. 110206, 2021.10.1016/j.jcp.2021.110206
  38. 38. D. Levy, G. Puppo, and G. Russo, Central WENO schemes for hyperbolic systems of conservation laws, M2AN Math. Model. Numer. Anal., vol. 33, no. 3, pp. 547–571, 1999.10.1051/m2an:1999152
  39. 39. F. Fambri and M. Dumbser, Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier-Stokes equations on staggered Cartesian grids, Applied Numerical Mathematics, vol. 110, pp. 41–74, 2016.10.1016/j.apnum.2016.07.014
  40. 40. A. Stroud, Approximate Calculation of Multiple Integrals. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1971.
  41. 41. V. Casulli, A semi-implicit finite difference method for non-hydrostatic free-surface flows, Int. J. Num. Meth. in Fluids, vol. 30, pp. 425–440, 1999.10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
  42. 42. B. Einfeldt, C. Munz, P. Roe, and B. Sjögreen, A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers, J. Comp. Phys., vol. 341, pp. 341–376, 2017.10.1016/j.jcp.2017.03.030
  43. 43. S. Boscarino, F. Filbet, and G. Russo, High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations, J. Sci. Comput., vol. 68, pp. 975–1001, 2016.10.1007/s10915-016-0168-y
  44. 44. C.-W. Shu, High-order finite difference and finite volume weno schemes and discontinuous galerkin methods for cfd, International Journal of Computational Fluid Dynamics, vol. 17, no. 2, pp. 107–118, 2003.10.1080/1061856031000104851
  45. 45. Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., vol. 7, pp. 856–869, 1986.10.1137/0907058
  46. 46. J. Bell, P. Coletta, and H. Glaz, A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., vol. 85, pp. 257–283, 1989.10.1016/0021-9991(89)90151-4
  47. 47. M. Dumbser, I. Peshkov, E. Romenski, and O. Zanotti, High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids, Journal of Computational Physics, vol. 314, pp. 824–862, 2016.10.1016/j.jcp.2016.02.015
  48. 48. W. Boscheri, M.Dumbser, M.Ioriatti, I.Peshkov, and E.Romenski, A structure-preserving staggered semi-implicit finite volume scheme for continuum mechanics, Journal of Computational Physics, vol. 424, p. 109866, 2021.10.1016/j.jcp.2020.109866
  49. 49. U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using Navier-Stokes equations and multigrid method, Journal of Computational Physics, vol. 48, pp. 387–411, 1982.10.1016/0021-9991(82)90058-4
  50. 50. V. Casulli, A semi-implicit numerical method for the free-surface Navier-Stokes equations, Int. J. Numer. Methods Fluids, vol. 74, pp. 605–622, 2014.10.1002/fld.3867
  51. 51. W. Boscheri, A space-time semi-Lagrangian advection scheme on staggered Voronoi meshes applied to free surface flows, Computers & Fluids, vol. 202, p. 104503, 2020.10.1016/j.compfluid.2020.104503
  52. 52. M. Tavelli, W. Boscheri, G. Stradiotti, G. R. Pisaturo, and M. Righetti, A mass-conservative semi-implicit volume of fluid method for the navier-stokes equations with high order semi-lagrangian advection scheme, Computers and Fluids, p. 105443, 2022.10.1016/j.compfluid.2022.105443
Language: English
Page range: 21 - 38
Submitted on: Apr 12, 2022
|
Accepted on: May 31, 2022
|
Published on: Jun 27, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Walter Boscheri, Maurizio Tavelli, Nicola Paoluzzi, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution 4.0 License.