Have a personal or library account? Click to login
Fluid-structure interaction simulations with a LES filtering approach in solids4Foam Cover

Fluid-structure interaction simulations with a LES filtering approach in solids4Foam

Open Access
|Aug 2021

References

  1. 1. K. Hughes, R. Vignjevic, J. Campbell, T. Vuyst, N. Djordjevic, and L. Papagiannis, From aerospace to offshore: Bridging the numerical simulation gaps–Simulation advancements for fluid-structure interaction problems, International Journal of Impact Engineering, vol. 61, pp. 48–63, 2013.10.1016/j.ijimpeng.2013.05.001
  2. 2. G. Hou, J. Wang, and A. Layton, Numerical Methods for Fluid-Structure Interaction - A Review, Communications in Computational Physics, vol. 12, pp. 337–377, 2012.10.4208/cicp.291210.290411s
  3. 3. H.-J. Bungartz and M. Schäfer, Fluid-Structure Interaction: Modelling, Simulation, Optimization. Springer, 2006.10.1007/3-540-34596-5
  4. 4. H.-J. Bungartz, M. Mehl, and M. Schäfer, Fluid-Structure Interaction II. Modelling, Simulation, Optimization. Springer, 2010.10.1007/978-3-642-14206-2
  5. 5. S. Piperno, C. Farhat, and B. Larrouturou, Partitioned procedures for the transient solution of coupled aeroelastic problems - Part I: Model problem, theory and two-dimensional application, Computer Methods in Applied Mechanics and Engineering, vol. 124, pp. 79–112, 1995.10.1016/0045-7825(95)92707-9
  6. 6. M. Fernández, J. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol. 69, no. 4, pp. 794–821, 2006.10.1002/nme.1792
  7. 7. A. Quaini and A. Quarteroni, A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method, Mathematical Models and Methods in Applied Sciences, vol. 17, no. 06, pp. 957–983, 2007.10.1142/S0218202507002170
  8. 8. S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni, Fluid-structure algorithms based on Steklov-Poincaré operators, Computer Methods in Applied Mechanics and Engineeering, vol. 195, no. 41-43, pp. 5797–5812, 2006.
  9. 9. K.-J. Bathe, H. Zhang, and S. Ji, Finite element analysis of fluid flows fully coupled with structural interactions, Computers & Structures, vol. 72, no. 1, pp. 1 – 16, 1999.10.1016/S0045-7949(99)00042-5
  10. 10. M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid–structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 1, pp. 1 – 23, 2004.10.1016/j.cma.2003.09.006
  11. 11. S. Badia, A. Quaini, and A. Quarteroni, Modular vs. non-modular preconditioners for fluid–structure systems with large added-mass effect, Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 49, pp. 4216 – 4232, 2008.
  12. 12. P. Causin, J. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 42-44, pp. 4506–4527, 2005.
  13. 13. J. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows, M2AN Mathematical Modelling and Numerical Analysis, vol. 37, no. 4, pp. 631–648, 2003.10.1051/m2an:2003049
  14. 14. M. Fernández and M. Moubachir, A Newton method using exact Jacobians for solving fluid-structure coupling, Computers & Structures, vol. 83, no. 2-3, pp. 127–142, 2005.10.1016/j.compstruc.2004.04.021
  15. 15. S. Piperno, Explicit/Implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations, International Journal for Numerical Methods in Fluids, vol. 25, pp. 1207–1226, 1997.
  16. 16. E. Burman and M. Fernández, Stabilized explicit coupling for fluid-structure interaction using Nitsche’s method, Comptes Rendus Mathematique, vol. 345, pp. 467–472, 2007.10.1016/j.crma.2007.09.010
  17. 17. M. Bukac, S. Canic, R. Glowinski, J. Tambaca, and A. Quaini, Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement, Journal of Computational Physics, vol. 235, pp. 515 – 541, 2013.10.1016/j.jcp.2012.08.033
  18. 18. J. Degroote and J. Bathe, K.-J.and Vierendeels, Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction, Computers & Structures, vol. 87, pp. 793–801, 2009.10.1016/j.compstruc.2008.11.013
  19. 19. J. Degroote and J. Vierendeels, Multi-solver algorithms for the partitioned simulation of fluid–structure interaction, Computer Methods in Applied Mechanics and Engineering, vol. 200, pp. 2195–2210, 2011.
  20. 20. T. Richter, A monolithic geometric multigrid solver for fluid-structure interactions in ale formulation, International Journal for Numerical Methods in Engineering, vol. 104, pp. 372–390, 2015.10.1002/nme.4943
  21. 21. A. Slone, K. Pericleous, C. Bailey, M. Cross, and C. Bennett, A finite volume unstructured mesh approach to dynamic fluid-structure interaction: An assessment of the challenge of predicting the onset of flutter, Applied Mathematical Modelling, vol. 28, pp. 211–239, 2004.10.1016/S0307-904X(03)00142-2
  22. 22. P. Cardiff, A. Karac, P. D. Jaeger, H. Jasak, J. Nagy, A. Ivankovic, and Z. Tukovic, An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations, 2018.
  23. 23. H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in physics, vol. 12, no. 6, pp. 620–631, 1998.10.1063/1.168744
  24. 24. M. Breuer, G. De Nayer, M. Münsch, T. Gallinger, and R. Wüchner, Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation, Journal of Fluids and Structures, vol. 29, pp. 107–130, 2012.10.1016/j.jfluidstructs.2011.09.003
  25. 25. J. Revstedt, Interaction between an incompressible flow and elastic cantilevers of circular cross-section, International Journal of Heat and Fluid Flow, vol. 43, pp. 244–250, 2013.10.1016/j.ijheatfluidflow.2013.06.004
  26. 26. J. Lorentzon and J. Revstedt, A numerical study of partitioned FSI applied to a cantilever in incompressible turbulent flow, International Journal for Numerical Methods in Engineering, vol. 121, pp. 806–827, 2019.10.1002/nme.6245
  27. 27. L. Bertagna, A. Quaini, and A. Veneziani, Deconvolution-based nonlinear filtering for incompressible flows at moderately large Reynolds numbers, International Journal for Numerical Methods in Fluids, vol. 81, no. 8, pp. 463–488, 2016.10.1002/fld.4192
  28. 28. M. Girfoglio, A. Quaini, and G. Rozza, A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization, Computers & Fluids, vol. 187, pp. 27–45, 2019.10.1016/j.compfluid.2019.05.001
  29. 29. K. Rege and B. Hjertager, Application of foam-extend on turbulent fluid-structure interaction, IOP Conference Series Materials Science and Engineering, vol. 276, p. 012031, 2017.
  30. 30. B. Sekutkovski, I. Kostić, A. Simonovic, P. Cardiff, and V. Jazarević, Three-dimensional fluid–structure interaction simulation with a hybrid RANS-LES turbulence model for applications in transonic flow domain, Aerospace Science and Technology, vol. 49, pp. 1–16, 2015.10.1016/j.ast.2015.11.028
  31. 31. J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, and J. Vierendeels, Performance of partitioned procedures in fluid-structure interaction, Computers & Structures, vol. 88, pp. 446–457, 2010.10.1016/j.compstruc.2009.12.006
  32. 32. F.-B. Tian, H. Dai, H. Luo, J. Doyle, and B. Rousseau, Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems, Journal of Computational Physics, vol. 258, pp. 451–469, 2014.10.1016/j.jcp.2013.10.047388407924415796
  33. 33. T. Richter, Goal-oriented error estimation for fluid-structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol. 223-224, pp. 28–42, 2011.10.1016/j.cma.2012.02.014
  34. 34. L. Zhu, G.-W. He, S. Wang, L. Miller, X. Zhang, Q. You, and S. Fang, An immersed boundary method based on the lattice boltzmann approach in three dimensions, with application, Computers & Mathematics with Applications, vol. 61, pp. 3506–3518, 2011.
  35. 35. T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, vol. 29, no. 3, pp. 329–349, 1981.10.1016/0045-7825(81)90049-9
  36. 36. P. D. Thomas and C. K. Lombard, Geometric conservation law and its application to flow computations on moving grids, AIAA Journal, vol. 17, pp. 1030–1037, 1997.
  37. 37. I. Demirdzić and M. Perić, Space conservation law in finite volume calculations of fluid flow, International Journal of Numerical Methods in Fluids, vol. 8, pp. 1037–1050, 1988.
  38. 38. J. Borggaard, T. Iliescu, and J. Roop, A bounded artificial viscosity large eddy simulation model, SIAM Journal on Numerical Analysis, vol. 47, pp. 622–645, 2009.10.1137/060656164
  39. 39. W. Layton, L. Rebholz, and C. Trenchea, Modular nonlinear filter stabilization of methods for higher Reynolds numbers flow, Journal of Mathematical Fluid Mechanics, vol. 14, pp. 325–354, 2012.10.1007/s00021-011-0072-z
  40. 40. J. Hunt, A. Wray, and P. Moin, Eddies stream and convergence zones in turbulent flows, Tech. Rep. CTR-S88, CTR report, 1988.
  41. 41. A. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Physics of Fluids, vol. 16, no. 10, pp. 3670–3681, 2004.
  42. 42. A. L. Bowers, L. G. Rebholz, A. Takhirov, and C. Trenchea, Improved accuracy in regularization models of incompressible flow via adaptive nonlinear filtering, International Journal for Numerical Methods in Fluids, vol. 70, no. 7, pp. 805–828, 2012.10.1002/fld.2732
  43. 43. Z. Tukovic and H. Jasak, A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow, Computers & Fluids, vol. 55, pp. 70–84, 2012.10.1016/j.compfluid.2011.11.003
  44. 44. H. Jasak and Z. Tukovic, Automatic mesh motion for the unstructured finite volume method, Transactions of FAMENA, vol. 30, pp. 1–20, 2006.
  45. 45. A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics. Springer Verlag, 2007.10.1007/978-0-387-22750-4
  46. 46. Z. Tukovic, A. Karac, P. Cardi, H. Jasak, and A. Ivankovic, OpenFOAM Finite Volume Solver for Fluid-Solid Interaction, Transactions of FAMENA, vol. 42, pp. 1–31, 2018.10.21278/TOF.42301
  47. 47. U. Küttler and W. Wall, Fixed-point fluid-structure interaction solvers with dynamic relaxation, Computational Mechanics, vol. 43, pp. 61–72, 2008.10.1007/s00466-008-0255-5
  48. 48. Y. Bazilevs, V. Calo, J. Cottrell, T. Hughes, A. Reali, and G. Scovazzi, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 1, pp. 173–201, 2007.10.1016/j.cma.2007.07.016
  49. 49. M. Girfoglio, A. Quaini, and G. Rozza, A POD-Galerkin reduced order model for a LES filtering approach, Journal of Computational Physics, vol. 436, p. 110260, 2021.
  50. 50. R. I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, Journal of Computational Physics, vol. 62, no. 1, pp. 40–65, 1986.10.1016/0021-9991(86)90099-9
  51. 51. S. V. Patankar and D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer, vol. 15, no. 10, pp. 1787–1806, 1972.
  52. 52. J. P. Van Doormaal and G. D. Raithby, Enhancements of the simple method for predicting incompressible fluid flows, Numerical Heat Transfer, vol. 7, no. 2, pp. 147–163, 1984.10.1080/01495728408961817
  53. 53. M. Luhar and H. Nepf, Flow-induced reconfiguration of buoyant and flexible aquatic vegetation, Limnology and Oceanography, vol. 56, pp. 2003–2017, 2011.
  54. 54. A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers, Doklady Akademii Nauk SSSR, vol. 30, pp. 301–305, 1941.
  55. 55. A. N. Kolmogorov, Dissipation of energy in isotropic turbulence, Doklady Akademii Nauk SSSR, vol. 32, pp. 19–21, 1941.
  56. 56. P. Lax and B. Wendroff, System of conservation laws, Communications on Pure and Applied Mathematics, vol. 13, pp. 217–237, 1960.10.1002/cpa.3160130205
  57. 57. W. Meng, Analysis on dynamic response of a tension-leg platform riser system, Master’s thesis, Rice University, 2018.
Language: English
Page range: 13 - 28
Submitted on: May 3, 2021
Accepted on: Jun 21, 2021
Published on: Aug 10, 2021
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Michele Girfoglio, Annalisa Quaini, Gianluigi Rozza, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution 4.0 License.