Have a personal or library account? Click to login
Numerical methods for a system of coupled Cahn-Hilliard equations Cover

Numerical methods for a system of coupled Cahn-Hilliard equations

Open Access
|Mar 2021

References

  1. 1. J. Cahn, On spinodal decomposition, Acta Metallurgica, vol. 9, pp. 795–801, 1961.10.1016/0001-6160(61)90182-1
  2. 2. J. E. Hilliard and J. W. Cahn, Free energy of a non-uniform system. iii. nucleation in a two-component incompressible fluid, The Journal of Chemical Physics, vol. 31, pp. 688–699, 1959.10.1063/1.1730447
  3. 3. J. E. Hilliard and J. W. Cahn, Free energy of a non-uniform system. i. interfacial free energy, The Journal of Chemical Physics, vol. 28, pp. 258–267, 1958.10.1063/1.1744102
  4. 4. L. Q.-X., D. A., V. Rottschafer, M. de Jager, P. M. J. Herman, R. M., and J. Van de Koppel, Phase separation explains a new class of self-organized spatial patterns in ecological systems, Proceedings of the National Academy of Sciences of the USA, vol. 110, pp. 11905–11910, 2013.
  5. 5. S. Tremaine, On the origin of irregular structure in saturn’s rings, The Astronomical Journal, vol. 125, pp. 894–901, 2003.10.1086/345963
  6. 6. S. M. Wise, J. S. Lowengrub, H. B. Frieboes, and V. Cristini, Three-dimensional multispecies nonlinear tumor growth-i: Model and numerical method, Journal of Theoretical Biology, vol. 253, pp. 524–543, 2008.10.1016/j.jtbi.2008.03.027347266418485374
  7. 7. J. Huh, D. Jeong, J. Kim, D. Lee, J. Shin, and A. Yun, Physical, mathematical, and numerical derivations of the cahn-hilliard equation, Computational Materials Science, vol. 81, pp. 216–225, 2014.10.1016/j.commatsci.2013.08.027
  8. 8. A. Miranville, The cahn-hilliard equation and some of its variants, AIMS Mathematics, vol. 2, pp. 479–544, 2017.10.3934/Math.2017.2.479
  9. 9. E. Avalos, T. Higuchi, T. Teramoto, H. Yabu, and Y. Nishiura, Frustrated phases under three-dimensional confinement simulated by a set of coupled cahn-hilliard equations, Soft Matter, vol. 12, pp. 5905–5914, 2016.
  10. 10. D. Eyre, An unconditionally stable one-step scheme for gradient systems. unpublished article, 1998.
  11. 11. T. Teramoto and Y. Nishiura, Morphological characterization of the diblock copolymer problem with topological computation, Japan Journal of Industrial and Applied Mathematics, vol. 27, pp. 175–190, 2010.10.1007/s13160-010-0014-9
  12. 12. E. Avalos, T. Higuchi, T. Teramoto, H. Yabu, and Y. Nishiura, Electronic supplementary information for soft matter manuscript: Frustrated phases under three-dimensional confinement simulated by a set of coupled cahn-hilliard equations.
  13. 13. T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, vol. 19, pp. 2621–2632, 1986.
  14. 14. A. Quarteroni, Numerical models for di erential problems. Springer International Publishing, 2017.
  15. 15. F. Guillen-Gonzales and G. Tierra, On linear schemes for a cahn-hilliard di use interface model, Journal of Computational Physics, vol. 234, pp. 140–171, 2013.10.1016/j.jcp.2012.09.020
  16. 16. X. Wu, G. Van Zwieten, and K. Van der Zee, Stabilized second-order convex splitting schemes for cahn-hilliard models with application to di use-interface tumor-growth models, International Journal for Numerical Methods in Biomedical Engineering., vol. 30, pp. 180–203, 2014.10.1002/cnm.259724023005
  17. 17. D. Eyre, Unconditionally gradient stable time marching the cahn-hilliard equation, MRS Proceedings, vol. 529, 1998.10.1557/PROC-529-39
Language: English
Page range: 1 - 12
Submitted on: Oct 8, 2020
Accepted on: Mar 16, 2021
Published on: Mar 30, 2021
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Mattia Martini, Giacomo E. Sodini, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution 4.0 License.