Have a personal or library account? Click to login
Effect of parameter selection on different topological structures for Particle Swarm Optimization algorithm Cover

Effect of parameter selection on different topological structures for Particle Swarm Optimization algorithm

By: Daniele Peri  
Open Access
|Nov 2019

References

  1. 1. J. Kennedy and R. Eberhart, Particle swarm optimization, in Proc. IEEE Int’l. Conf. on Neural Networks, 1995.
  2. 2. Y. Zhang, S. Wang, and J. Gelin, A comprehensive survey on particle swarm optimization algorithm and its applications, Mathematical Problems in Engineering, vol. 2015, no. ID 931256, pp. 1–38, 2015.10.1155/2015/931256
  3. 3. J. Kennedy, Small worlds and mega-minds: Effects of neighborhood topology on particle swarm optimization, in Proc. IEEE Int’l. Conf. on Evolutionary Computations - CEC ’99, vol. 3, pp. 1931–1938, World Scientific, 1999.
  4. 4. P. Suganthan, Particle swarm optimizer with neighborhood operator, in Proc. IEEE Int’l. Conf. on Evolutionary Computations - CEC ’99, vol. 3, pp. 1958–1962, 1999.
  5. 5. M. D’Orsogna, Y. C. Y., A. Bertozzi, and L. Chayes, Self-propelled particles with soft-core interactions: patterns, stability and collapse, Phys. Rev. Lett., vol. 96, no. 10, 2006.10.1103/PhysRevLett.96.10430216605738
  6. 6. D. Peri, An inner-point modification of pso for constrained optimization, Engineering Computations, vol. 32, no. 7, pp. 2005–2019, 2015.10.1108/EC-04-2014-0066
  7. 7. D. Peri, M. D. M., and G. Fasano, Comparison between deterministic and stochastic formulations of particle swarm optimization, for multidisciplinary design optimization, in 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, vol. AIAA Paper 2012-5523, pp. 71–78, AIAA, 2012.10.2514/6.2012-5523
  8. 8. R. Mendes, J. Kennedy, and J. Neves, The fully informed particle swarm: simpler, maybe better, IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 204–210, 2004.10.1109/TEVC.2004.826074
  9. 9. M. M. de Oca and T. S. T., Convergence behavior of the fully informed particle swarm optimization algorithm, in GECCO ’08 Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 71–78, 2008.
  10. 10. R. Kennedy and R. Mendes, Population structure and particle swarm performance, in Proc. IEEE Int’l. Conf. on Evolutionary Computations - CEC ’02, vol. 2, pp. 1671–1676, 2002.
  11. 11. X. Li, Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multi-modal function optimization, in Genetic and Evolutionary Computation – GECCO 2004, pp. 105–116, 2004.10.1007/978-3-540-24854-5_10
  12. 12. C. Perttunen, Geometric approach to feasible region division in constrained global optimization, in IEEE International Conference on Systems, Man, and Cybernetics ’Decision Aiding for Complex Systems’, vol. 1, pp. 582–590, 1991.
  13. 13. A. D. Mascio, R. Broglia, and B. Favini, A Second Order Godunov-Type Scheme for Naval Hydrodynamics, pp. 253–261. Boston, MA: Springer US, 2001.10.1007/978-1-4615-0663-8_27
  14. 14. T. Sederberg and S. Parry, Free-form deformation of solid geometric models, in Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1986, vol. 2(4), pp. 151–160, 1986.10.1145/15886.15903
Language: English
Page range: 199 - 207
Submitted on: Mar 5, 2019
|
Accepted on: Oct 21, 2019
|
Published on: Nov 18, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Daniele Peri, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.