Have a personal or library account? Click to login
A certified RB method for PDE-constrained parametric optimization problems Cover

A certified RB method for PDE-constrained parametric optimization problems

Open Access
|Jun 2019

References

  1. 1. A. Borzì and V. Schulz, Computational Optimization of Systems Governed by Partial Differential Equations. SIAM, 2011.10.1137/1.9781611972054
  2. 2. M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints. Springer, 2009.
  3. 3. A. Quarteroni, G. Rozza, and A. Quaini, Reduced basis methods for optimal control of advection- diffusion problem, in Advances in Numerical Mathematics, W. Fitzgibbon, R. Hoppe, J. Periaux, O. Pironneau, and Y. Vassilevski, Editors, pp. 193–216, 2007.
  4. 4. L. Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems, SIAM Journal on Scientific Computing, vol. 32, no. 2, pp. 997–1019, 2010.10.1137/090760453
  5. 5. L. Dedè, Reduced basis method and error estimation for parametrized optimal control problems with control constraints, Journal of Scientific Computing, vol. 50, no. 2, pp. 287–305, 2012.10.1007/s10915-011-9483-5
  6. 6. T. Tonn, K. Urban, and S. Volkwein, Comparison of the reduced basis and pod a posteriori error estimators for an elliptic linear-quadratic optimal control problem, Mathematical and Computer Modelling of Dynamical Systems, vol. 17, no. 4, pp. 355–369, 2011.10.1080/13873954.2011.547678
  7. 7. M. A. Dihlmann and B. Haasdonk, Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems, Computational Optimization and Applications, vol. 60, no. 3, pp. 753–787, 2015.10.1007/s10589-014-9697-1
  8. 8. M. Dihlmann and B. Haasdonk, Certified nonlinear parameter optimization with reduced basis surrogate models, Proceedings in Applied Mathematics & Mechanics, vol. 13, no. 1, pp. 3–6, 2013.10.1002/pamm.201310002
  9. 9. Y. Zhang, L. Feng, S. Li, and P. Benner, Accelerating PDE constrained optimization by the reduced basis method: application to batch chromatography, International Journal for Numerical Methods in Engineering, vol. 104, no. 11, pp. 983–1007, 2015.10.1002/nme.4950
  10. 10. K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 42, no. 1, pp. 1–23, 2008.10.1051/m2an:2007054
  11. 11. M. Kahlbacher and S. Volkwein, Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems, Disc. Math.: Diff. Incl., Control and Optim., vol. 27, pp. 95–117, 2007.10.7151/dmdico.1078
  12. 12. E. W. Sachs and S. Volkwein, Pod-Galerkin approximations in pde-constrained optimization, GAMM- Mitteilungen, vol. 33, no. 2, pp. 194–208, 2010.10.1002/gamm.201010015
  13. 13. M. Kahlbacher and S. Volkwein, POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 46, no. 02, pp. 491–511, 2012.10.1051/m2an/2011061
  14. 14. O. Lass, Reduced Order Modeling and Parameter Identification for Coupled Nonlinear PDE Systems. PhD thesis, University of Konstanz, 2014.
  15. 15. D. Amsallem, M. J. Zahr, Y. Choi, and C. Farhat, Design optimization using hyper-reduced order models, Struct. Multidisc. Optim., 2014.10.1007/s00158-014-1183-y
  16. 16. M. Gubisch and S. Volkwein, Pod a-posteriori error analysis for optimal control problems with mixed control-state constraints, Computational Optimization and Applications, vol. 58, no. 3, pp. 619–644, 2014.10.1007/s10589-014-9636-1
  17. 17. M. Gubisch and S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, in Model Reduction and Approximation: Theory and Algorithms (P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, eds.), pp. 5–66, SIAM, 2017.10.1137/1.9781611974829.ch1
  18. 18. F. Negri, G. Rozza, A. Manzoni, and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems, SIAM Journal on Scientific Computing, vol. 35, no. 5, pp. A2316–A2340, 2013.10.1137/120894737
  19. 19. F. Negri, A. Manzoni, and G. Rozza, Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations, Computers & Mathematics with Applications, vol. 69, no. 4, pp. 319–336, 2015.10.1016/j.camwa.2014.12.010
  20. 20. M. Kärcher and M. Grepl, A certified reduced basis method for parametrized elliptic optimal control problems, ESAIM: Control, Optimisation and Calculus of Variations, vol. 20, no. 2, pp. 416–441, 2014.10.1051/cocv/2013069
  21. 21. M. Kärcher, Z. Tokoutsi, M. Grepl, and K. Veroy, Certified reduced basis methods for parametrized elliptic optimal control problems with distributed controls, Journal of Scientific Computing, vol. 75, no. 1, pp. 276–307, 2018.10.1007/s10915-017-0539-z
  22. 22. P. Benner, E. Sachs, and S. Volkwein, Model order reduction for PDE constrained optimization, in Trends in PDE Constrained Optimization (G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher, and S. Ulbrich, eds.), pp. 303–326, Springer International Publishing, 2014.10.1007/978-3-319-05083-6_19
  23. 23. A. Borzì and G. von Winckel, A pod framework to determine robust controls in pde optimization, Computing and Visualization in Science, vol. 14, no. 3, pp. 91–103, 2011.10.1007/s00791-011-0165-5
  24. 24. A. Manzoni, A. Quarteroni, and G. Rozza, Shape optimization for viscous flows by reduced basis methods and free-form deformation, International Journal for Numerical Methods in Fluids, vol. 70, no. 5, pp. 646–670, 2012.10.1002/fld.2712
  25. 25. T. Lassila and G. Rozza, Parametric free-form shape design with pde models and reduced basis method, Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 23–24, pp. 1583–1592, 2010.10.1016/j.cma.2010.01.007
  26. 26. F. Negri, A. Manzoni, and D. Amsallem, Efficient model reduction of parametrized systems by matrix discrete empirical interpolation, Journal of Computational Physics, vol. 303, pp. 431–454, 2015.10.1016/j.jcp.2015.09.046
  27. 27. M. Grepl, N. Nguyen, K. Veroy, A. Patera, and G. Liu, Certified rapid solution of partial differential equations for real-time parameter estimation and optimization, in Real-time PDE-Constrained Optimization (L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. Van Bloemen Waanders, eds.), pp. 197–215, SIAM, 2007.10.1137/1.9780898718935.ch10
  28. 28. M. Bambach, M. Heinkenschloss, and M. Herty, A method for model identification and parameter estimation, Inverse Problems, vol. 29, no. 2, 2013.10.1088/0266-5611/29/2/025009
  29. 29. T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza, A reduced computational and geometrical framework for inverse problems in haemodynamics, International Journal for Numerical Methods in Biomedical Engineering, vol. 29, no. 7, pp. 741–776, 2013.10.1002/cnm.255923798318
  30. 30. C. Lieberman, K. Willcox, and O. Ghattas, Parameter and state model reduction for large-scale statistical inverse problems, SIAM Journal on Scientific Computing, vol. 32, no. 5, pp. 2523–2542, 2010.10.1137/090775622
  31. 31. A. Manzoni, S. Pagani, and T. Lassila, Accurate solution of Bayesian inverse uncertainty quantification problems combining reduced basis methods and reduction error models, SIAM/ASA Journal on Uncertainty Quantification, vol. 4, no. 1, pp. 380–412, 2016.10.1137/140995817
  32. 32. M. Zahr, K. Carlberg, and D. Kouri, An efficient, globally convergent method for optimization under uncertainty using adaptive model reduction and sparse grids, arXiv preprint arXiv:1811.00177, 2018.10.1137/18M1220996
  33. 33. A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations. An Introduction. Springer, 2016.10.1007/978-3-319-15431-2
  34. 34. E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. I: Fixed-Point Theorems. Springer-Verlag, 1985.10.1007/978-1-4612-5020-3
  35. 35. J. Nocedal and S. J. Wright, Numerical Optimization. Springer New York, 2006.
  36. 36. E. Arian, M. Fahl, and E. Sachs, Trust-region proper orthogonal decomposition for flow control, tech. rep., Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA, 2000. Technical report, DTIC Document.
  37. 37. Y. Yue and K. Meerbergen, Accelerating pde-constrained optimization by model order reduction with error control, SIAM Journal on Optimization, vol. 23, pp. 1344–1370, 2013.10.1137/120869171
  38. 38. M. J. Zahr and C. Farhat, Progressive construction of a parametric reduced-order model for PDE- constrained optimization, International Journal for Numerical Methods in Engineering, vol. 102, no. 5, pp. 1111–1135, 2015.10.1002/nme.4770
  39. 39. C. Kelley, Iterative Methods for Optimization. SIAM, 1999.10.1137/1.9781611970920
  40. 40. G. Rozza, D. Huynh, and A. Patera, Reduced basis approximation and a posteriori error estimation for a nely parametrized elliptic coercive partial differential equations, Archives of Computational Methods in Engineering, vol. 15, pp. 229–275, 2008.10.1007/s11831-008-9019-9
  41. 41. A. Manzoni and F. Negri, Heuristic strategies for the approximation of stability factors in quadratically nonlinear parametrized PDEs, Advances in Computational Mathematics, vol. 41, no. 5, pp. 1255–1288, 2015.10.1007/s10444-015-9413-4
  42. 42. R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, vol. 10, pp. 1–102, 2001.10.1017/S0962492901000010
  43. 43. R. Becker, H. Kapp, and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM Journal on Control and Optimization, vol. 39, no. 1, pp. 113–132, 2000.10.1137/S0363012999351097
  44. 44. F. Brezzi, J. Rappaz, and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Num. Math., vol. 38, no. 1, pp. 1–30, 1982.10.1007/BF01395805
  45. 45. G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems, in Handbook of Numerical Analysis, Vol. V (P. Ciarlet and J. Lions, eds.), pp. 487–637, Elsevier Science B.V., 1997.10.1016/S1570-8659(97)80004-X
  46. 46. G. Rozza and A. Manzoni, Model order reduction by geometrical parametrization for shape optimization in computational fluid dynamics, in Proceedings of the ECCOMAS CFD 2010, V European Conference on Computational Fluid Dynamics, 2010.
  47. 47. H. Antil, M. Heinkenschloss, and D. C. Sorensen, Application of the discrete empirical interpolation method to reduced order modeling of nonlinear and parametric systems, in Reduced Order Methods for Modeling and Computational Reduction (A. Quarteroni and G. Rozza, eds.), pp. 101–136, Springer, 2014.10.1007/978-3-319-02090-7_4
  48. 48. B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids. Oxford University Press, 2001.
  49. 49. A. Manzoni, F. Salmoiraghi, and L. Heltai, Reduced basis isogeometric methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils, Computer Methods in Applied Mechanics and Engineering, vol. 284, pp. 1147 – 1180, 2015.10.1016/j.cma.2014.11.037
  50. 50. G. Rozza, T. Lassila, and A. Manzoni, Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map, in Spectral and High Order Methods for Partial Differential Equations. Selected papers from the ICOSAHOM ’09 conference, June 22-26, Trondheim, Norway (J. S. Hesthaven and E. Rønquist, eds.), pp. 307–315, Springer, 2011.10.1007/978-3-642-15337-2_28
Language: English
Page range: 123 - 152
Submitted on: Jun 14, 2018
|
Accepted on: May 17, 2019
|
Published on: Jun 15, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Andrea Manzoni, Stefano Pagani, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.