Have a personal or library account? Click to login
Mathematical Approach and Implementation of Frequency Mapping Techniques in Power-Line Communications Channel Cover

Mathematical Approach and Implementation of Frequency Mapping Techniques in Power-Line Communications Channel

Open Access
|May 2019

References

  1. 1. H. C. Ferreira, L. Lampe, J. Newbury, and T. G. Swart, Power Line Communications: Theory and Applications for Narrowband and Broadband Communications over Power Lines. Wiley, 2011.10.1002/9780470661291
  2. 2. A. J. H. Vinck, J. Haering, and T. Wadayama, Coded m-fsk for power line communications, in Proceedings of the IEEE International Symposium on Information Theory, p. 137, Sorrento, Italy, Jun. 25–30, 2000.10.1109/ISIT.2000.866429
  3. 3. T. M. Lukusa, K. Ouahada, and H. C. Ferreira, Advantage of using permutation trellis codes and m-fsk modulation for power-line communications channel, in Proceedings of 2011 IEEE Africon, pp. 1–6, Livingstone, Zambia, Sept. 13–15, 2011.10.1109/AFRCON.2011.6072019
  4. 4. J. Seberry, Orthogonal Designs: Hadamard Matrices, Quadratic Forms and Algebras. Springer, 2017.10.1007/978-3-319-59032-5
  5. 5. T. M. Lukusa, K. Ouahada, and H. C. Ferreira, Frequency mappings with hadamard transform for power line communications channel, in Proceedings of the International Symposium on Power-Line Communications and its Applications, pp. 418–423, Udine, Italy, Apr. 3–6, 2011.10.1109/ISPLC.2011.5764433
  6. 6. A. K. Mandal, Full-Optical TOAD based Walsh-Hadamard code generation. Springer, 2017.10.1007/s11082-017-1130-4
  7. 7. P. Zheng and J. Huang, Efficient encrypted images filtering and transform coding with walsh-hadamard transform and parallelization, in Proc. IEEE Transactions on Image Processing, pp. 2541– 2556, 2018.10.1109/TIP.2018.2802199
  8. 8. W. Chen, L. Wang, Y. Fan, H. Lin, and X. Wei, Efficient resource allocation and interference management using compressive sensing in dense mobile communication systems, in 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), pp. 1–6, 2016.10.1109/WCSP.2016.7752477
  9. 9. http://www.cenelec.eu/Cenelec/Homepage.htm.
  10. 10. L. Lampe, A. M. Tonello, and T. G. Swart, Power Line Communications: Principles, Standards and Applications from Multimedia to Smart Grid. Wiley, 2016.10.1002/9781118676684
  11. 11. A. J. H. Vinck and J. Haering, Coding and modulation for power line communications, in Proceedings of the International Symposium on Power-Line Communications and its Applications, pp. 265–272, Limerick, Ireland, 2000.
  12. 12. S. Haykin, Communication Systems. John Wiley & Sons, Inc., New York, 2009.
  13. 13. A. Viterbi and J. Omura, Principles of Digital Communication and Coding. Dover Publications, USA, 2013.
  14. 14. R. El-Bardan, E. Masazade, O. Ozdemir, Y. S. Han, and P. K. Varshney, Permutation trellis coded multi-level fsk signaling to mitigate primary user interference in cognitive radio networks, IEEE Trans. Commun., vol. 64, no. 1, pp. 104–11, 2016.10.1109/TCOMM.2015.2504508
  15. 15. K. Ouahada and H. C. Ferreira, k-cube construction mappings from binary vectors to permutation sequences, in Proceedings of the IEEE International Symposium on Information Theory, pp. 630–634, Seoul, South Korea, June 28–July 3, 2009.10.1109/ISIT.2009.5205703
Language: English
Page range: 88 - 108
Submitted on: May 21, 2017
Accepted on: Mar 28, 2019
Published on: May 11, 2019
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Tedy Lukusa, Khmaies Ouahada, Hendrik C. Ferreira, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.