Have a personal or library account? Click to login
On weak regularity requirements of the relaxation modulus in viscoelasticity Cover

On weak regularity requirements of the relaxation modulus in viscoelasticity

Open Access
|May 2019

References

  1. 1. G. Amendola, S. Carillo and A. Manes, Classical free energies of a heat conductor with memory and the minimum free energy for its discrete spectrum model, Bollettino U. M.l., sect. B, vol.3, pp. 421-446, 2010.
  2. 2. G. Amendola, S. Carillo, J.M. Golden and A. Manes, Viscoelastic fluids: free energies, differential problems and asymptotic behaviour, Discrete and Continuous Dynamical Systems - Series B, vol. 19, pp.1815-1835, 2014.10.3934/dcdsb.2014.19.1815
  3. 3. M. Bertsch, P. Podio-Guidugli and V. Valente, On the dynamics of deformable ferromagnets, I. Global weak solutions for soft ferromagnets at rest, Ann. Mat. Pura Appl. (IV), vol. CLXXIX, pp. 331–360, 2001.10.1007/BF02505962
  4. 4. W.F. Brown, Magnetoelastic Interactions, Springer Tracts in Natural Philosophy, vol.9, Springer Verlag, 1966.10.1007/978-3-642-87396-6
  5. 5. S. Carillo, V. Valente, and G. Vergara Caffarelli, A result of existence and uniqueness for an integro-differential system in magneto-viscoelasticity, Applicable Analisys, vol. 90, pp. 1791-1802, 2010.10.1080/00036811003735832
  6. 6. S. Carillo, V. Valente, and G. Vergara Caffarelli, An existence theorem for the magnetic-viscoelastic problem, Discrete and Continuous Dynamical Systems Series S., vol. 5, pp. 435-447, 2012.10.3934/dcdss.2012.5.435
  7. 7. S. Carillo, V. Valente and G. Vergara Caffarelli, A linear viscoelasticity problem with a singular memory kernel: an existence and uniqueness result, Differential and Integral Equations, vol. 26, pp. 1115-1125, 2013.10.57262/die/1372858565
  8. 8. S. Carillo, Singular kernel problems in materials with memory, Meccanica, vol. 50, pp. 603-615, 2015.10.1007/s11012-014-0083-y
  9. 9. S. Carillo, A 3-dimensional singular kernel problem in viscoelasticity: an existence result, Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, vol. 97 (S1), 13 pp., 2019. DOI: 10.1478/AAPP.97S1A3.10.1478/AAPP.97S1A3
  10. 10. S. Carillo, M. Chipot, V. Valente and G. Vergara Caffarelli, A magneto-viscoelasticity problem with a singular memory kernel, Nonlinear Analysis Series B: Real World Applications, vol. 35C, pp. 200-210, 2017.10.1016/j.nonrwa.2016.10.014
  11. 11. S. Carillo, V. Valente and G. Vergara Caffarelli, Heat conduction with memory: a singular kernel problem, Evolution Equations and Control Theory, vol. 3, pp. 399-410, 2014.10.3934/eect.2014.3.399
  12. 12. M. Chipot, I. Shafrir, V. Valente, and G. Vergara Caffarelli, A nonlocal problem arising in the study of magneto-elastic interactions, Boll. UMI Serie IX, I, pp. 197-222, 2008.
  13. 13. M. Chipot, I. Shafrir, V. Valente, and G. Vergara Caffarelli, On a hyperbolic-parabolic system arising in magnetoelasticity, J. Math. Anal. Appl., vol. 352, pp. 120-131, 2009.10.1016/j.jmaa.2008.04.013
  14. 14. C.M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Diff. Equations, vol. 7, pp. 554-569, 1970.10.1016/0022-0396(70)90101-4
  15. 15. C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., vol. 37, pp. 297-308, 1970.10.1007/BF00251609
  16. 16. M. De Angelis, On the transition from parabolicity to hyperbolicity for a nonlinear equation under Neumann boundary conditions, Meccanica, Article in Press, 2018.10.1007/s11012-018-0906-3
  17. 17. A. DeSimone and G. Dolzmann, Existence of minimizers for a variational problem in two-dimensional nonlinear magneto-elasticity, Arch. Rational Mech. Anal., vol. 144, pp. 107-120, 1998.10.1007/s002050050114
  18. 18. M. Fabrizio, G. Gentili and J.M. Golden, Non-isothermal free energies for linear theories with memory, Mathematical and Computer Modelling, vol. 39, pp. 219-253, 2004.10.1016/S0895-7177(04)90009-X
  19. 19. M. Fabrizio and A. Morro, Mathematical problems in linear viscoelasticity, SIAM Studies in Applied Mathematics, 12, Philadelphia, PA, 1992.10.1137/1.9781611970807
  20. 20. G. Gentili, Maximum recoverable work, minimum free energy and state space in linear viscoelasticity, Quart. Appl. Math., vol. 60, pp. 153–182, 2002.10.1090/qam/1878264
  21. 21. C. Giorgi and A. Morro, Viscoelastic solids with unbounded relaxation function, Continuum Mechanics And Thermodynamics, vol. 4, pp. 151-165, 1992.10.1007/BF01125696
  22. 22. D. Kinderlehrer, Magnetoelastic interactions, in variational methods for discontinuous structures, Prog. Nonlinear Differential Equations Appl., vol. 25, Birkhauser Basel, pp. 177-189, 1996.10.1007/978-3-0348-9244-5_17
  23. 23. Md. Mahiuddin, Md. Imran H. Khan, Nghia Duc Pham and M.A. Karim, Development of fractional viscoelastic model for characterising viscoelastic properties of food material during drying, Food Bioscience, vol.23, pp. 45-53, 2018.10.1016/j.fbio.2018.03.002
  24. 24. A. Rassoli, N. Fatouraee and R. Guidoin, Structural model for viscoelastic properties of pericardial bioprosthetic valves, Artificial Organs, vol. 42, pp. 630-639, 2018.10.1111/aor.1309529602267
  25. 25. A. Shahin-Shamsabadi, et al., Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity, Materials Science and Engineering: C, vol. 90, pp. 280-288, 2018.10.1016/j.msec.2018.04.08029853093
  26. 26. V. Valente and G. Vergara Caffarelli, On the dynamics of magneto-elastic interactions: existence of solutions and limit behavior, Asymptotic Analysis, vol. 51, pp. 319-333, 2007.10.3233/ASY-2007-811
  27. 27. G. Vergara Caffarelli, Dissipativity and uniqueness for the one-dimensional dynamical problem of linear viscoelasticity (Italian), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., vol. 83, pp.483-488, 1988.
  28. 28. G. Vergara Caffarelli, Dissipativity and existence for the one-dimensional dynamical problem of linear viscoelasticity (Italian), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., vol. 82, pp. 489-496, 1988.
  29. 29. Z. Stropek and K. Golacki, Viscoelastic response of apple flesh in a wide range of mechanical loading rates, International Agrophysics, vol. 32, pp. 335-340, 2018.10.1515/intag-2017-0023
Language: English
Page range: 78 - 87
Submitted on: Nov 16, 2018
Accepted on: Apr 24, 2019
Published on: May 11, 2019
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Sandra Carillo, Michel Chipot, Vanda Valente, Giorgio Vergara Caffarelli, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.