Have a personal or library account? Click to login
A degenerate pseudo-parabolic equation with memory Cover

References

  1. 1. M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, Stability and memory effects in a homogenized model governing the electrical conduction in biological tissues, Journal of Mechanics of Materials and Structures, vol. 4, pp. 211–223, 2009.10.2140/jomms.2009.4.211
  2. 2. M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, Homogenization limit and asymptotic decay for electrical conduction in biological tissues in the high radiofrequency range, Communications on Pure and Applied Analysis, vol. 9, pp. 1131–1160, 2010.10.3934/cpaa.2010.9.1131
  3. 3. M. Amar, D. Andreucci, R. Gianni, and C. Timofte, Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace-Beltrami operator, Submitted (2018).
  4. 4. M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, Homogenization limit for electrical conduction in biological tissues in the radio-frequency range, Comptes Rendus Mécanique, vol. 331, pp. 503–508, 2003. Elsevier.10.1016/S1631-0721(03)00107-4
  5. 5. M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Mathematical Models and Methods in Applied Sciences, vol. 14, pp. 1261–1295, 2004. World Scientific.10.1142/S0218202504003623
  6. 6. M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, On a hierarchy of models for electrical conduction in biological tissues, Mathematical Methods in the Applied Sciences, vol. 29, pp. 767–787, 2006.10.1002/mma.709
  7. 7. M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, Exponential asymptotic stability for an elliptic equation with memory arising in electrical conduction in biological tissues, European Journal of Applied Mathematics, vol. 20, pp. 431–459, 2009.10.1017/S0956792509990052
  8. 8. M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, An elliptic equation with history, C. R. Acad. Sci. Paris, Ser. I, vol. 338, pp. 595–598, 2004. Elsevier.10.1016/j.crma.2004.02.008
  9. 9. G. Barenblatt, V. Entov, and V. Ryzhik, Theory of Fluid Flow Through Natural Rocks. Kluwer, Dordrecht, 1990.10.1007/978-94-015-7899-8
  10. 10. M. G. Crandall, S.-O. Londen, and J. A. Nohel, An abstract nonlinear Volterra integrodifferential equation, Journal of Mathematical Analysis and Applications, vol. 64, no. 3, pp. 701–735, 1978.10.1016/0022-247X(78)90014-8
  11. 11. M. Fabrizio, Sul problema di Fichera in viscoelasticità lineare, in Atti del IV Meeting: Waves and Stability, Bari, 1989.
  12. 12. G. Fichera, Integro-differential problems of hereditary elasticity, Atti del Seminario Matematico e Fisico dell’Università di Modena, vol. 26, no. 2, pp. 363–370 (1979), 1977.
  13. 13. C. Giorgi and B. Lazzari, On the stability for linear viscoelastic solids, Quarterly of Applied Mathematics, vol. 55, no. 4, pp. 659–675, 1997.10.1090/qam/1486541
  14. 14. W. Gray and S. Hassanizadeh, Thermodynamic basis of capillary pressure in porous media, Water Resources Research, vol. 29, pp. 3389–3405, 1993.10.1029/93WR01495
  15. 15. M. L. Heard, An abstract parabolic Volterra integro-differential equation, SIAM Journal on Mathematical Analysis, vol. 13, no. 1, pp. 81–105, 1982.10.1137/0513006
  16. 16. R. K. Miller, An integro-differential equation for rigid heat conductors with memory, Journal of Mathematical Analysis and Applications, vol. 66, no. 2, pp. 313–332, 1978.10.1016/0022-247X(78)90234-2
  17. 17. M. Ptashnyk, Degenerate quaslinear pseudoparabolic equations with memory terms and variational inequalities, Nonlinear Analysis, vol. 66, no. 12, pp. 2653–2675, 2007.10.1016/j.na.2006.03.046
  18. 18. L. Tartar, Memory effects and homogenization, Archive for Rational Mechanics and Analysis, vol. 111, no. 2, pp. 121–133, 1990.10.1007/BF00375404
Language: English
Page range: 71 - 77
Submitted on: Dec 8, 2018
Accepted on: Feb 25, 2019
Published on: May 11, 2019
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Micol Amar, Daniele Andreucci, Roberto Gianni, Claudia Timofte, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.