Have a personal or library account? Click to login
Extension of tumor fingers: A comparison between an individual-cell based model and a measure theoretic approach Cover

Extension of tumor fingers: A comparison between an individual-cell based model and a measure theoretic approach

Open Access
|May 2019

References

  1. 1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 4th ed. Garland Science, 2002.
  2. 2. H. Osada and T. Takahashi, Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer, Oncogene, vol. 21, pp. 7421–7434, 2002.10.1038/sj.onc.1205802
  3. 3. W. Mueller-Klieser, Tumor biology and experimental therapeutics, Crit. Rev. Oncol. Hematol., vol. 36, pp. 123–139, 2002.10.1016/S1040-8428(00)00082-2
  4. 4. P. Vaupel and M.Hockel, Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance (review), Int. J. Oncol., vol. 17, pp. 869–879, 2000.10.3892/ijo.17.5.869
  5. 5. J. M. Brown, Tumor microenvironment and the response to anticancer therapy, Cancer Biol. Ther., vol. 1, pp. 453–458, 2002.10.4161/cbt.1.5.157
  6. 6. S. S. Cross, Fractals in pathology, J. Pathol., vol. 182, pp. 1–8, 1997.10.1002/(SICI)1096-9896(199705)182:1<;1::AID-PATH808>3.0.CO;2-B
  7. 7. G. Landini, Y. Hirayama, T. J. Li, and M. Kitano, Increased fractal complexity of the epithelial connective tissue interface in the tongue of 4nq0-treated rats, Pathol. Res. Pract., vol. 196, pp. 251– 258, 2000.10.1016/S0344-0338(00)80074-6
  8. 8. A. Balter, R. M. H. Merks, N. J. Poplawski, M. Swat, and A. J. Glazier, The Glazier-Graner-Hogeweg model: extensions, future directions, and opportunities for further study, in Single-Cell-Based Models in Biology and Medicine (A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, eds.), Mathematics and Biosciences in Interactions, pp. 151–167, Birkaüser, 2007.10.1007/978-3-7643-8123-3_7
  9. 9. J. A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E, vol. 47, pp. 2128–2158, 1993.10.1103/PhysRevE.47.2128
  10. 10. J. A. Glazier, A. Balter, and N. J. Poplawski, Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model, in Single-Cell-Based Models in Biology and Medicine (A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, eds.), Mathematics and Biosciences in Interactions, pp. 79–106, Birkaüser, 2007.10.1007/978-3-7643-8123-3_4
  11. 11. F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two dimensional extended Potts model, Phys. Rev. Lett., vol. 69, pp. 2013–2017, 1992.10.1103/PhysRevLett.69.2013
  12. 12. M. Scianna and L. Preziosi, Multiscale developments of the cellular Potts model, Multiscale Model. Simul., vol. 10, pp. 342–382, 2012.10.1137/100812951
  13. 13. E. Ising, Beitrag zur theorie des ferromagnetismus, Z. Physik., vol. 31, p. 253, 1925.10.1007/BF02980577
  14. 14. R. B. Potts, Some generalized order-disorder transformations, Proc. Camb. Phil. Soc., vol. 48, pp. 106– 109, 1952.10.1017/S0305004100027419
  15. 15. R. M. H. Merks and P. Koolwijk, Modeling morphogenesis in silico and in vitro: Towards quantitative, predictive, cell-based modeling, Math. Model. Nat. Phenom., vol. 4, pp. 149–171, 2009.10.1051/mmnp/20094406
  16. 16. M. Scianna, L. Munaron, and L. Preziosi, A multiscale hybrid approach for vasculogenesis and related potential blocking therapies, Prog. Biophys. Mol. Biol., vol. 160, pp. 450–462, 2010.10.1016/j.pbiomolbio.2011.01.004
  17. 17. S. Turner and J. A. Sherratt, Intercellular adhesion and cancer invasion: A discrete simulation using the extended potts model, J. Theor. Biol., vol. 216, pp. 85–100, 2002.10.1006/jtbi.2001.2522
  18. 18. N. Metropolis, A. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., vol. 21, pp. 1087–1092, 1953.10.1063/1.1699114
  19. 19. M. S. Steinberg, Does differential adhesion govern self-assembly processes in histogenesis? equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells, J. Exp. Zool., vol. 173, pp. 395–433, 1970.10.1002/jez.1401730406
  20. 20. S. Huang and D. E. Ingber, The structural and mechanical complexity of cell-growth control, Nat. Cell Biol., vol. 1, pp. 131–138, 1999.10.1038/13043
  21. 21. N. J. Savill and P. Hogeweg, Modelling morphogenesis: From single cells to crawling slugs, J. Theor. Biol., vol. 184, pp. 118–124, 1997.10.1006/jtbi.1996.0237
  22. 22. G. Murphy and J. Gavrilovic, Proteolysis and cell migration: Creating a path?, Curr. Opin. Cell Biol., vol. 11, pp. 614–621, 1999.10.1016/S0955-0674(99)00022-8
  23. 23. A. Colombi, M. Scianna, and A. Tosin, Differentiated cell behavior: a multiscale approach using measure theory, J. Math. Biol., 2015, in press. doi: 10.1007/s00285-014-0846-z.10.1007/s00285-014-0846-z25358500
  24. 24. A. Colombi, M. Scianna, and L. Preziosi, A measure-theoretic model for collective cell migration and aggregation, Math. Model. Nat. Phenom., vol. 1, no. 10, pp. 32–63, 2015.10.1051/mmnp/201510101
  25. 25. E. Cristiani, B. Piccoli, and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., vol. 9, no. 1, pp. 155–182, 2011.10.1137/100797515
  26. 26. B. Piccoli and F. Rossi, Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Appl. Math., vol. 124, no. 1, pp. 73–105, 2013.10.1007/s10440-012-9771-6
  27. 27. B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., vol. 199, no. 3, pp. 707–738, 2011.10.1007/s00205-010-0366-y
  28. 28. A. Tosin and P. Frasca, Existence and approximation of probability measure solutions to models of collective behaviors, Netw. Heterog. Media, vol. 6, no. 3, pp. 561–596, 2011.10.3934/nhm.2011.6.561
  29. 29. R. Gatenby, K. Smallbone, P. Maini, F. Rose, J. Averill, R. Nagle, L. Worrall, and R. Gillies, Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer, Br. J. Cancer, vol. 97, pp. 646–653, 2007.10.1038/sj.bjc.6603922236037217687336
  30. 30. J. Smolle, Fractal tumor stromal border in a nonequilibrium growth model, Anal. Quant. Cytol. Histol., vol. 20, pp. 7–13, 1998.
  31. 31. S. M. Wise, J. S. Lowengrub, H. B. Frieboes, and V. Cristini, Three-dimensional multispecies nonlinear tumor growth–i model and numerical method, Int. J. Oncol., vol. 253, pp. 524–543, 2008.10.1016/j.jtbi.2008.03.027347266418485374
  32. 32. A. R. A. Anderson, A. M. Weaver, P. T. Cummings, and V. Quaranta, Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell, vol. 127, no. 5, pp. 905–915, 2006.10.1016/j.cell.2006.09.04217129778
Language: English
Page range: 54 - 69
Submitted on: Oct 20, 2015
Accepted on: May 23, 2016
Published on: May 11, 2019
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Marco Scianna, Annachiara Colombi, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.