Have a personal or library account? Click to login
An inversion method based on random sampling for real-time MEG neuroimaging Cover

An inversion method based on random sampling for real-time MEG neuroimaging

Open Access
|May 2019

References

  1. 1. S. Supek and C. J. Aine, Magnetoencephalography. From signals to dynamic cortical networks. Springer, 2014.10.1007/978-3-642-33045-2
  2. 2. G. Sudre, L. Parkkonen, E. Bock, S. Baillet, W. Wang, and D. J. Weber, rtMEG: a real-time software interface for magnetoencephalography, Computational intelligence and neuroscience, vol. 2011, p. 11, 2011.10.1155/2011/327953
  3. 3. J. Kaipio and E. Somersalo, Statistical and computational inverse problems, vol. 160. Springer, 2005.10.1007/b138659
  4. 4. C. Del Gratta, V. Pizzella, F. Tecchio, and G. L. Romani, Magnetoencephalography - A noninvasive brain imaging method with 1 ms time resolution, Reports on Progress in Physics, vol. 64, no. 12, p. 1759, 2001.10.1088/0034-4885/64/12/204
  5. 5. M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain, Reviews of modern Physics, vol. 65, no. 2, p. 413, 1993.10.1103/RevModPhys.65.413
  6. 6. R. Kress, L. Kühn, and R. Potthast, Reconstruction of a current distribution from its magnetic field, Inverse Problems, vol. 18, no. 4, p. 1127, 2002.10.1088/0266-5611/18/4/312
  7. 7. J. Cantarella, D. De Turck, and H. Gluck, The Biot-Savart operator for application to knot theory, fluid dynamics, and plasma physics, Journal of Mathematical Physics, vol. 42, pp. 876–905, 2001.10.1063/1.1329659
  8. 8. S. Baillet, J. C. Mosher, and R. M. Leahy, Electromagnetic brain mapping, IEEE Signal processing magazine, vol. 18, no. 6, pp. 14–30, 2001.10.1109/79.962275
  9. 9. A. Pascarella and A. Sorrentino, Statistical approaches to the inverse problem. INTECH Open Access Publisher, 2011.10.5772/27932
  10. 10. A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen, and M. S. Hämäläinen, MNE software for processing MEG and EEG data, Neuroimage, vol. 86, pp. 446–460, 2014.10.1016/j.neuroimage.2013.10.027393085124161808
  11. 11. A. Gramfort, M. Kowalski, and M. Hämäläinen, Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods, Physics in medicine and biology, vol. 57, no. 7, p. 1937, 2012.10.1088/0031-9155/57/7/1937356642922421459
  12. 12. M. Fornasier and F. Pitolli, Adaptive iterative thresholding algorithms for magnetoencephalography (MEG), Journal of Computational and Applied Mathematics, vol. 221, no. 2, pp. 386–395, 2008.10.1016/j.cam.2007.10.048
  13. 13. S. Haufe, V. V. Nikulin, A. Ziehe, K.-R. Müller, and G. Nolte, Combining sparsity and rotational invariance in EEG/MEG source reconstruction, NeuroImage, vol. 42, no. 2, pp. 726–738, 2008.10.1016/j.neuroimage.2008.04.24618583157
  14. 14. F. Pitolli and G. Bretti, An iterative algorithm with joint sparsity constraints for magnetic tomography, Lecture Notes in Computer Sciences, vol. 5862, pp. 316–328, 2010.10.1007/978-3-642-11620-9_21
  15. 15. M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, Hierarchical Bayesian estimation for MEG inverse problem, NeuroImage, vol. 23, no. 3, pp. 806–826, 2004.10.1016/j.neuroimage.2004.06.03715528082
  16. 16. D. Calvetti, A. Pascarella, F. Pitolli, E. Somersalo, and B. Vantaggi, A hierarchical Krylov–Bayes iterative inverse solver for MEG with physiological preconditioning, Inverse Problems, vol. 31, no. 12, p. 125005, 2015.10.1088/0266-5611/31/12/125005
  17. 17. J. C. Mosher and R. M. Leahy, Source localization using recursively applied and projected (RAP) MUSIC, IEEE Transactions on signal processing, vol. 47, no. 2, pp. 332–340, 1999.10.1109/78.740118
  18. 18. A. Sorrentino, L. Parkkonen, A. Pascarella, C. Campi, and M. Piana, Dynamical MEG source modeling with multi-target Bayesian filtering, Human brain mapping, vol. 30, no. 6, pp. 1911–1921, 2009.10.1002/hbm.20786
  19. 19. S. Sommariva and A. Sorrentino, Sequential Monte Carlo samplers for semi-linear inverse problems and application to magnetoencephalography, Inverse Problems, vol. 30, no. 11, p. 114020, 2014.10.1088/0266-5611/30/11/114020
  20. 20. D. L. Donoho, Superresolution via sparsity constraints, SIAM Journal on Mathematical Analysis, vol. 23, no. 5, pp. 1309–1331, 1992.10.1137/0523074
  21. 21. V. Bruni, F. Pitolli, and C. Pocci, A comparison of iterative thresholding algorithms for the MEG inverse problem, IMACS Series in Computational and Applied Mathematics, vol. 19, pp. 21–30, 2016.
  22. 22. F. Pitolli and C. Pocci, Neuroelectric source localization by random spatial sampling, Journal of Computational and Applied Mathematics, vol. 296, pp. 237–246, 2016.10.1016/j.cam.2015.09.028
  23. 23. B. D. Van Veen, W. Van Drongelen, M. Yuchtman, and A. Suzuki, Localization of brain electrical activity via linearly constrained minimum variance spatial filtering, IEEE Transactions on biomedical engineering, vol. 44, no. 9, pp. 867–880, 1997.10.1109/10.6230569282479
  24. 24. K. Sekihara and S. S. Nagarajan, Adaptive spatial filters for electromagnetic brain imaging. Springer Science & Business Media, 2008.
  25. 25. M. A. Quraan, Characterization of brain dynamics using beamformer techniques: advantages and limitations. INTECH Open Access Publisher, 2011.
  26. 26. D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J. Holmes, and A. C. Evans, Design and construction of a realistic digital brain phantom, Medical Imaging, IEEE Transactions on, vol. 17, no. 3, pp. 463–468, 1998.10.1109/42.7121359735909
  27. 27. R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data, Computational intelligence and neuroscience, vol. 2011, 2010.10.1155/2011/156869302184021253357
  28. 28. V. Pizzella, S. Della Penna, C. Del Gratta, and G. L. Romani, SQUID systems for biomagnetic imaging, Superconductor Science and Technology, vol. 14, no. 7, p. R79, 2001.10.1088/0953-2048/14/7/201
  29. 29. G. Nolte, The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors, Physics in medicine and biology, vol. 48, no. 22, p. 3637, 2003.10.1088/0031-9155/48/22/00214680264
  30. 30. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot, Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, Neuroimage, vol. 15, no. 1, pp. 273–289, 2002.10.1006/nimg.2001.097811771995
  31. 31. D. Calvetti, B. Wodlinger, D. M. Durand, and E. Somersalo, Hierarchical beamformer and cross-talk reduction in electroneurography, Journal of Neural Engineering, vol. 8, no. 5, p. 056002, 2011.10.1088/1741-2560/8/5/056002
Language: English
Page range: 25 - 34
Submitted on: Nov 9, 2016
|
Accepted on: Nov 14, 2017
|
Published on: May 11, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Annalisa Pascarella, Francesca Pitolli, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.