Have a personal or library account? Click to login
A particle model reproducing the effect of a conflicting flight information on the honeybee swarm guidance Cover

A particle model reproducing the effect of a conflicting flight information on the honeybee swarm guidance

Open Access
|Dec 2018

References

  1. 1. I. D. Couzin and J. Krause, Self-organization and collective behavior in vertebrates, Advances in the Study of Behavior, vol. 32, pp. 1-75, 2003.10.1016/S0065-3454(03)01001-5
  2. 2. I. Giardina, Collective behavior in animal groups: theoretical models and empirical studies, Human Frontier Science Program, vol. 2, no. 4, pp. 205-219, 2008.10.2976/1.2961038263993619404431
  3. 3. J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socioeconomic and Life Sciences (G. Naldi, L. Pareschi, and G. Toscani, eds.), pp. 297-336, Birkhäuser Boston, 2010.10.1007/978-0-8176-4946-3_12
  4. 4. D. J. T. Sumpter, Collective Animal Behavior. Princeton University Press, 2010.10.1515/9781400837106
  5. 5. T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, vol. 517, no. 3-4, pp. 71-140, 2012.10.1016/j.physrep.2012.03.004
  6. 6. L. L. Langstroth, The hive and the honey bee, a bee-keeper's manual. Northampton, Hopkins, Bridgman & Company, 1853.10.5962/bhl.title.54437
  7. 7. K. M. Passino and T. D. Seeley, Modeling and analysis of nest-site selection by honeybee swarms: the speed and accuracy trade-off, Behavioral Ecology and Sociobiology, vol. 59, no. 3, pp. 427-442, 2006.10.1007/s00265-005-0067-y
  8. 8. K. M. Schultz, K. M. Passino, and T. D. Seeley, The mechanism of fight guidance in honeybee swarms: subtle guides or streaker bees?, Journal of Experimental Biology, vol. 211, pp. 3287-3295, 2008.10.1242/jeb.018994
  9. 9. T. D. Seeley, Honeybee democracy. Princeton University Press, 2010.10.1515/9781400835959
  10. 10. M. Lindauer, Schwarmbienen auf wohnungssuche, Z vergl Physiol, vol. 37, no. 4, pp. 263-324, 1955.10.1007/BF00303153
  11. 11. D. C. Gilley, The identity of nest-site scouts in honey bee swarms, Apidologie, vol. 29, no. 3, pp. 229- 240, 1998.10.1051/apido:19980303
  12. 12. M. Beekman, R. L. Fathke, and T. D. Seeley, How does an informed minority of scouts guide a honeybee swarm as it flies to its new home?, Animal Behaviour, vol. 71, no. 1, pp. 161-171, 2006.10.1016/j.anbehav.2005.04.009
  13. 13. J. Rangel and T. D. Seeley, Colony fissioning in honey bees: size and significance of the swarm fraction, Insectes Sociaux, vol. 59, no. 4, pp. 453-462, 2012.10.1007/s00040-012-0239-5
  14. 14. T. D. Seeley and P. K. Visscher, Quorum sensing during nest-site selection by honeybee swarms, Behavioral Ecology and Sociobiology, vol. 56, no. 6, pp. 594-601, 2004.10.1007/s00265-004-0814-5
  15. 15. T. D. Seeley, R. A. Morse, and P. K. Visscher, The natural history of the flight of honey bee swarms, Psyche: A Journal of Entomology, vol. 86, no. 2-3, pp. 103-113, 1979.10.1155/1979/80869
  16. 16. T. D. Seeley and S. C. Buhrman, Group decision making in swarms of honey bees, Behavioral Ecology and Sociobiology, vol. 45, no. 1, pp. 19-31, 1999.10.1007/s002650050536
  17. 17. U. Greggers, C. Schöning, J. Degen, and R. Menzel, Scouts behave as streakers in honeybee swarms, Naturwissenschaften, vol. 100, no. 8, pp. 805-809, 2013.10.1007/s00114-013-1077-723812604
  18. 18. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, Novel type of phase transition in a system of self-driven particles, Physical Review Letters, vol. 75, no. 6, pp. 1226-1229, 1995.10.1103/PhysRevLett.75.1226
  19. 19. J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani, Asymptotic flocking dynamics for the kinetic cucker-smale model, SIAM Journal on Mathematical Analysis, vol. 42, no. 1, pp. 218-236, 2010.10.1137/090757290
  20. 20. A. Mogilner, L. Edelstein-Keshet, L. Bent, and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, Journal of Mathematical Biology, vol. 47, no. 4, pp. 353-389, 2003.10.1007/s00285-003-0209-714523578
  21. 21. Y. Chen and T. Kolokolnikov, A minimal model of predator-swarm dynamics, Journal of Royal Society Interface, vol. 11, no. 94, 2014.10.1098/rsif.2013.1208397336624598204
  22. 22. D. Forster, D. R. Nelson, and M. J. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Physical Review A, vol. 16, no. 2, pp. 732-749, 1977.10.1103/PhysRevA.16.732
  23. 23. J. Toner and T. Tu, Long-range order in a two-dimensional dynamical xy model: how birds y together, Physical Review Letters, vol. 75, no. 23, pp. 4326-4329, 1995.10.1103/PhysRevLett.75.4326
  24. 24. J. Toner and T. Tu, Flocks, herds and schools: a quantitative theory of flocking, Physical Review E, vol. 58, no. 4, pp. 4828-4858, 1998.10.1103/PhysRevE.58.4828
  25. 25. C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM Journal on Applied Mathematics, vol. 65, no. 1, pp. 152-174, 2004.10.1137/S0036139903437424
  26. 26. C. M. Topaz, A. L. Bertozzi, and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bulletin of Mathematical Biology, vol. 68, no. 7, pp. 1601-1623, 2006.10.1007/s11538-006-9088-6
  27. 27. E. Jäger and L. A. Segel, On the distribution of dominance in populations of social organisms, SIAM Journal on Applied Mathematics, vol. 52, no. 5, pp. 1442-1468, 1992.10.1137/0152083
  28. 28. L. Arlotti and N. Bellomo, Solution of a new class of nonlinear kinetic models of population dynamics, Applied Mathematics Letters, vol. 9, no. 2, pp. 65-70, 1996.10.1016/0893-9659(96)00014-6
  29. 29. A. Bellouquid and M. Delitala, Modelling Complex Biological Systems - A Kinetic Theory Approach. Birkhäuser, 2006.
  30. 30. S. Janson, M. Middendorf, and M. Beekman, Honeybee swarms: how do scouts guide a swarm of uninformed bees?, Animal Behaviour, vol. 70, no. 2, pp. 349-358, 2005.10.1016/j.anbehav.2004.10.018
  31. 31. K. Diwold, T. M. Schaerf, M. R. Myerscough, M. Middendorf, and M. Beekman, Deciding on the wing: in-flight decision making and search space sampling in the red dwarf honeybee apis florea, Swarm Intelligence, vol. 5, no. 2, pp. 121-141, 2011.10.1007/s11721-011-0054-z
  32. 32. R. C. Fetecau and A. Guo, A mathematical model for flight guidance in honeybee swarms, Bulletin of Mathematical Biology, vol. 74, no. 11, pp. 2600-2621, 2012.10.1007/s11538-012-9769-2
  33. 33. S. Bernardi, A. Colombi, and M. Scianna, A particle model analysing the behavioural rules underlying the collective flight of a bee swarm towards the new nest, Journal of Biological Dynamics, vol. 12, no. 1, pp. 632-662, 2018.10.1080/17513758.2018.150110530051763
  34. 34. T. Latty, M. Duncan, and M. Beekman, High bee traffic disrupts transfer of directional information in ying honeybee swarms, Animal Behaviour, vol. 78, no. 1, pp. 117-121, 2009.10.1016/j.anbehav.2009.04.007
  35. 35. M. Scianna and L. Preziosi, Multiscale developments of the cellular potts model, Multiscale Modeling & Simulation, vol. 10, no. 2, pp. 342-382, 2012.10.1137/100812951
  36. 36. D. Drasdo, On selected individual-based approaches to the dynamics in multicellular systems, in Polymer and Cell Dynamics. Mathematics and Biosciences in Interaction. (W. Alt, M. Chaplain, M. Griebel, and J. Lenz, eds.), pp. 169-203, Springer, 2003.10.1007/978-3-0348-8043-5_15
  37. 37. E. Cristiani, B. Piccoli, and A. Tosin, Multiscale Modeling of Pedestrian Dynamics. Springer, 2014.10.1007/978-3-319-06620-2
  38. 38. L. Bruno, A. Tosin, P. Tricerri, and F. Venuti, Non-local first-order modelling of crowd dynamics: a multidimensional framework with applications, Applied Mathematical Modelling, vol. 35, no. 1, pp. 426-445, 2011.10.1016/j.apm.2010.07.007
  39. 39. A. Colombi, M. Scianna, and A. Alaia, A discrete mathematical model for the dynamics of a crowd of gazing pedestrians with and without an evolving environmental awareness, Computational and Applied Mathematics, vol. 36, no. 2, pp. 1113-1141, 2017.10.1007/s40314-016-0316-x
  40. 40. A. Colombi and M. Scianna, Modelling human perception processes in pedestrian dynamics: a hybrid approach, Royal Society Open Science, vol. 4, no. 3, 2017.10.1098/rsos.160561538380928405352
  41. 41. A. Colombi, M. Scianna, and A. Tosin, Moving in a crowd: human perception as a multiscale process, Journal of Coupled Systems and Multiscale Dynamics, vol. 4, no. 1, pp. 25-29, 2016.10.1166/jcsmd.2016.1093
  42. 42. I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, Effective leadership and decision-making in animal groups on the move, Nature, vol. 433, pp. 513-516, 2005.10.1038/nature0323615690039
  43. 43. S. Bernardi, A. Colombi, and M. Scianna, A discrete particle model reproducing collective dynamics of a bee swarm, Computers in Biology and Medicine, vol. 93, pp. 158-174, 2018.10.1016/j.compbiomed.2017.12.02229316459
  44. 44. R. Seidl and W. Kaiser, Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees, Journal of Comparative Physiology, vol. 143, no. 1, pp. 17-26, 1981.10.1007/BF00606065
  45. 45. I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, Collective memory and spatial sorting in animal groups, Journal of Theoretical Biology, vol. 218, no. 1, pp. 1-11, 2002.10.1006/jtbi.2002.306512297066
  46. 46. J. A. Carrillo, A. Colombi, and M. Scianna, Adhesion and volume constraints via nonlocal interactions determine cell organisation and migration profiles, Journal of Theoretical Biology, vol. 445, pp. 75-91, 2018.10.1016/j.jtbi.2018.02.02229476831
  47. 47. J. A. Cañizo, J. A. Carrillo, and F. Patacchini, Existence of compactly supported global minimisers for the interaction energy, Archive for Rational Mechanics and Analysis, vol. 217, pp. 1197-1217, 2015.10.1007/s00205-015-0852-3
  48. 48. J. R. G. Dyer, C. C. Ioannou, L. J. Morrell, D. P. Croft, I. D. Couzin, D. A. Waters, and J. Krause, Consensus decision making in human crowds, Animal Behaviour, vol. 75, no. 2, pp. 461-470, 2008.10.1016/j.anbehav.2007.05.010
  49. 49. A. J. W. Ward, D. J. T. Sumpter, I. D. Couzin, P. J. B. Hart, and J. Krause, Quorum decision-making facilitates information transfer in fish shoals, Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 19, pp. 6948-6953, 2008. 17310.1073/pnas.0710344105238395518474860
Language: English
Page range: 159 - 173
Submitted on: Oct 22, 2018
Accepted on: Dec 4, 2018
Published on: Dec 14, 2018
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Sara Bernardi, Annachiara Colombi, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.