Have a personal or library account? Click to login
A Continuous–Time Markov Chain Modeling Cancer–Immune System Interactions Cover

A Continuous–Time Markov Chain Modeling Cancer–Immune System Interactions

Open Access
|Dec 2018

References

  1. 1. A. R. A. Anderson and P. K. Maini, Special issue: Mathematical oncology, Bull. Math. Biol., vol. 280, pp. 945{953, 2018.10.1007/s11538-018-0423-5
  2. 2. P. M. Altrock, L. L. Liu, and F. Michor, The mathematics of cancer: integrating quantitative models, Nat. Rev. Cancer, vol. 15, pp. 730{745, 2015.10.1038/nrc4029
  3. 3. M. P. Little, Cancer models, genomic instability and somatic cellular darwinian evolution, Biology Direct, vol. 5, pp. 1{19, 2010.10.1186/1745-6150-5-19
  4. 4. A. Konstorum, A. T. Vella, A. J. Adler, and R. C. Laubenbacher, Addressing current challenges in cancer immunotherapy with mathematical and computational modelling, J. R. Soc. Interface, vol. 14,p. 20170150, 2017.10.1098/rsif.2017.0150
  5. 5. M. Lachowicz, Individually-based Markov processes modeling nonlinear systems in mathematical biology, Nonlinear Anal. Real World Appl., vol. 12, pp. 2396{2407, 2011.10.1016/j.nonrwa.2011.02.014
  6. 6. J. Banasiak and M. Lachowicz, Methods of small parameter in mathematical biology. Basel: Birkhauser, 2014.10.1007/978-3-319-05140-6
  7. 7. N. Bellomo, A. Bellouquid, and E. De Angelis, The modelling of immune competition by generalized kinetic (boltzmann) models: review and research perspectives, Math. Comput. Modelling, vol. 37,pp. 65{86, 2003.10.1016/S0895-7177(03)80007-9
  8. 8. A. Bellouquid, E. De Angelis, and D. Knopoff, From the modeling of the immune hallmarks of cancerto a black swan in biology, Math. Models Methods Appl. Sci., vol. 23, pp. 949{978, 2013.10.1142/S0218202512500650
  9. 9. E. De Angelis, On the mathematical theory of post-darwinian mutations, selection, and evolution, Math. Models Methods Appl. Sci, vol. 24, pp. 2723{2742, 2014.10.1142/S0218202514500353
  10. 10. N. Bellomo, Modeling Complex Living Systems - A Kinetic Theory and Stochastic Game Approach. Basel: Birkhauser, 2008.
  11. 11. N. Bellomo, A. Bellouquid, L. Gibelli, and N. Outada, A Quest Towards a Mathematical Theory of Living Systems. Basel: Birkhaauser, 2017.10.1007/978-3-319-57436-3
  12. 12. N. Bellomo, P. Degond, and E. Tadmor, eds., Active Particles Volume 1 - Advances in Theory, Models, and Applications. Basel: Birkhaauser, 2017.10.1007/978-3-319-49996-3
  13. 13. A. D. Wentzell, A course in the theory of stochastic processes. McGraw-Hill International, 1981.
  14. 14. D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, vol. 44, pp. 646{674, 2011.10.1016/j.cell.2011.02.01321376230
  15. 15. A. Lasota and J. A. Yorke, Exact dynamical systems and the frobenius-perron operator, Trans. Amer. Math. Soc., vol. 273, pp. 375{384, 1982.10.1090/S0002-9947-1982-0664049-X
  16. 16. R. Rudnicki, Models of population dynamics and their applications in genetics, in From genetics tomathematics (M.Lachowicz and J. Mi_ekisz, eds.), pp. 103-147, New Jersey: World Sci., 2009.10.1142/9789812837257_0004
  17. 17. M. Lachowicz, A class of microscopic individual models corresponding to the macroscopic logistic growth, Math. Methods Appl. Sci., vol. 41, pp. 8446{8454, 2018.10.1002/mma.4680
  18. 18. M. Lachowicz, A class of individual-based models, BIOMATH, vol. 7, p. 1804127, 2018.10.11145/j.biomath.2018.04.127
  19. 19. N. Bellomo and B. Carbonaro, Toward a mathematical theory of living system focusing on developmental biology and evolution: A review and prospectives, Physics of Life Reviews, vol. 8, pp. 1{18, 2011.10.1016/j.plrev.2010.12.001
  20. 20. S. De Lillo and N. Bellomo, On the modeling of collective learning dynamics, Appl. Math. Lett., vol. 24, pp. 1861{1866, 2011.10.1016/j.aml.2011.05.007
  21. 21. F. Michor, Y. Iwasa, and M. A. Nowak, Dynamics of cancer progression, Nature Reviews Cancer, vol. 4, pp. 197{205, 2004.10.1038/nrc1295
  22. 22. P. C. Nowell, Tumor progression: a brief historical perspective, Seminars in Cancer Biology, vol. 12, pp. 261{266, 2002.10.1016/S1044-579X(02)00012-3
  23. 23. R. A. Gatenby and T. L. Vincent, Evolutionary model of carcinogenesis, Cancer Research, vol. 63, pp. 6212{1620, 2003.
  24. 24. L. Arlotti, N. Bellomo, and M. Lachowicz, Kinetic equations modelling population dynamics, Trans-port Theory Statist. Phys., vol. 29, pp. 125{139, 2000.10.1080/00411450008205864
  25. 25. M. Lachowicz, Links between microscopic and macroscopic descriptions, in Lecture Notes Math. 1940, Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic (J. Banasiak, V. Capasso, M. A. J. Chaplain, M. Lachowicz, and J. Miekisz, eds.), pp. 201{268, Berlin: Springer, 2008.10.1007/978-3-540-78362-6_4
Language: English
Page range: 106 - 118
Submitted on: Dec 1, 2017
Accepted on: Feb 5, 2018
Published on: Dec 19, 2018
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Diletta Burini, Elena De Angelis, Miroslaw Lachowicz, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.