Have a personal or library account? Click to login
Heat rectification in He II counterflow in radial geometries Cover

Heat rectification in He II counterflow in radial geometries

Open Access
|Dec 2018

References

  1. 1. Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes, Physical review letters, vol. 115, no. 19, p. 195503, 2015.10.1103/PhysRevLett.115.195503
  2. 2. S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Physical review letters, vol. 108, no. 21, p. 214303, 2012.10.1103/PhysRevLett.108.214303
  3. 3. M. Maldovan, Sound and heat revolutions in phononics, Nature, vol. 503, no. 7475, pp. 209-217, 2013.10.1038/nature12608
  4. 4. N. Li, J. Ren, L. Wang, G. Zhang, P. Hãnggi, and B. Li, Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond, Reviews of Modern Physics, vol. 84, no. 3, p. 1045, 2012.10.1103/RevModPhys.84.1045
  5. 5. C. Dames, Solid-state thermal rectification with existing bulk materials, Journal of Heat Transfer, vol. 131, no. 6, p. 061301, 2009.10.1115/1.3089552
  6. 6. D. Sawaki, W. Kobayashi, Y. Moritomo, and I. Terasaki, Thermal rectification in bulk materials with asymmetric shape, Appl. Phys. Lett., vol. 98, 2011.10.1063/1.3559615
  7. 7. W. Kobayashi, Y. Teraoka, and I. Terasaki, An oxide thermal rectifier, Applied Physics Letters, vol. 95, no. 17, p. 171905, 2009.10.1063/1.3253712
  8. 8. N. Yang, G. Zhang, and B. Li, Thermal rectification in asymmetric graphene ribbons, Applied Physics Letters, vol. 95, no. 3, p. 033107, 2009.10.1063/1.3183587
  9. 9. M. Criado-Sancho, L. F. D. Castillo, J. Casas-Vázquez, and D. Jou, Theoretical analysis of thermal rectification in a bulk Si/nanoporous Si device, Physics Letters A, vol. 376, no. 19, pp. 1641-1644, 2012.10.1016/j.physleta.2012.03.045
  10. 10. M. Criado-Sancho, F. X. Alvarez, and D. Jou, Thermal rectification in inhomogeneous nanoporous Si devices, Journal of Applied Physics, vol. 114, no. 5, p. 053512, 2013.10.1063/1.4816685
  11. 11. E.González-Noya, D. Srivastava, and M. Menon, Heat-pulse rectification in carbon nanotube y junctions, Physical Review B, vol. 79, no. 11, p. 115432, 2009.10.1103/PhysRevB.79.115432
  12. 12. C. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-state thermal rectifier, Science, vol. 314, no. 5802, pp. 1121-1124, 2006.10.1126/science.1132898
  13. 13. B. Hu, L. Yang, and Y. Zhang, Asymmetric heat conduction in nonlinear lattices, Physical review letters, vol. 97, no. 12, p. 124302, 2006.10.1103/PhysRevLett.97.124302
  14. 14. H. Machrafi, G. Lebon, and D. Jou, Thermal rectifier efficiency of various bulk-nanoporous silicon devices, International Journal of Heat and Mass Transfer, vol. 97, pp. 603-610, 2016.10.1016/j.ijheatmasstransfer.2016.02.048
  15. 15. R. Scheibner, M. König, D. Reuter, A. Wieck, C. Gould, H. Buhmann, and L. Molenkamp, Quantum dot as thermal rectifier, New Journal of Physics, vol. 10, no. 8, p. 083016, 2008.10.1088/1367-2630/10/8/083016
  16. 16. Y. C. Tseng, D. M. T. Kuo, Y. C. Chang, and L. Yan-Ting, Heat rectification effect of serially coupled quantum dots, Applied Physics Letters, vol. 103, no. 5, p. 053108, 2013.10.1063/1.4817258
  17. 17. C. F. Barenghi, L. Skrbek, and K. Sreenivasan, Introduction to quantum turbulence, Proc. NAt. Acad. Sci., PNAS-USA, vol. 111(1), pp. 4647-4652, 2014.10.1073/pnas.1400033111
  18. 18. R. J. Donnelly, Quantized vortices in helium II. Cambridge, UK: Cambridge University Press, 1991.
  19. 19. C. F. Barenghi, R. J. Donnelly, and W. F.Vinen, Quantized Vortex Dynamics and Superuid Turbulence. Berlin: Springer, 2001.10.1007/3-540-45542-6
  20. 20. S. K. Nemirovskii, Quantum turbulence: Theoretical and numerical problems, Physics Reports, vol. 524, no. 3, pp. 85-202, 2013.10.1016/j.physrep.2012.10.005
  21. 21. M. Sciacca, D. Jou, and M. S. Mongiovì, Effective thermal conductivity of helium II: from Landau to Gorter-Mellink regimes, Zeitschrift für angewandte Mathematik und Physik, vol. 66, no. 4, pp. 1835-1851, 2015.10.1007/s00033-014-0479-5
  22. 22. M. S. Mongiovì and D. Jou, Thermodynamical derivation of a hydrodynamical model of inhomogeneous superuid turbulence, Physical Review B, vol. 75, no. 2, p. 024507, 2007.10.1103/PhysRevB.75.024507
  23. 23. D. Jou, G. Lebon, and M. S. Mongiovì, Second sound, superuid turbulence, and intermittent effects in liquid helium II , Physical Review B, vol. 66, pp. 224509-224517, 2002.10.1103/PhysRevB.66.224509
  24. 24. M. Mongiovì, D. Jou, and M. Sciacca, Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superuid helium, Physics Report, vol. 726, pp. 1-71, 2018.10.1016/j.physrep.2017.10.004
  25. 25. L. Saluto, M. S. Mongiovì, and D. Jou, Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component, Zeitschrift für angewandte Mathematik und Physik, vol. 65, pp. 531-548, 2014.10.1007/s00033-013-0372-7
  26. 26. M. S. Mongiovì, Extended irreversible thermodynamics of liquid helium II, Physical Review B, vol. 48, no. 9, pp. 6276-6283, 1993.10.1103/PhysRevB.48.6276
  27. 27. M. S. Mongiovì, Extended irreversible thermodynamics of liquid helium II: boundary condition and propagation of fourth sound, Physica A: Statistical Mechanics and its Applications, vol. 292, no. 1, pp. 55{74, 2001.10.1016/S0378-4371(00)00537-9
  28. 28. D. Jou, J. Casas-Vázquez, and M. Criado-Sancho, Thermodynamics of Fluids Under Flow. Berlin: Springer, second ed., 2011.10.1007/978-94-007-0199-1
  29. 29. L. Saluto, D. Jou, and M. S. Mongiovì, Thermodynamic approach to vortex production and diffusion in inhomogeneous superfluid turbulence, Physica A: Statistical Mechanics and its Applications, vol. 406, pp. 272-280, 2014.10.1016/j.physa.2014.03.062
  30. 30. L. Saluto, D. Jou, and M. S. Mongiovi, Vortex diffusion and vortex-line hysteresis in radial quantum turbulence, Physica B: Condensed Matter, vol. 440, pp. 99-103, 2014.10.1016/j.physb.2014.01.041
  31. 31. M. Sciacca, M. Mongiovi, and D. Jou, Alternative vinen equation and its extension to rotating counterflow, superfluid turbulence, Physica B, vol. 403, pp. 2215-2224, 2008.10.1016/j.physb.2007.12.001
  32. 32. K. P. Martin and J. T. Tough, Evolution of superfluid turbulence in thermal counterflow, Phys. Rev. B, vol. 27, pp. 2788-2799, 1983.10.1103/PhysRevB.27.2788
  33. 33. S. K. Nemirovskii, Diffusion of inhomogeneous vortex tangle and decay of superuid turbulence, Phys. Rev. B, vol. 81, pp. 64512-64521, 2010.10.1103/PhysRevB.81.064512
  34. 34. G. W. Stagg, N. G. Parker, and C. F. Barenghi, Superfluid boundary layer, Phys. Rev. Lett., vol. 118, p. 135301, Mar 2017.10.1103/PhysRevLett.118.135301
  35. 35. M. L. Mantia, Particle dynamics in wall-bounded thermal counterflow of superfluid helium, Physics of Fluids, vol. 29, no. 6, p. 065102, 2017.10.1063/1.4984913
  36. 36. W. Vinen, Mutual friction in a heat current in liquid helium II. III. theory of the mutual friction, Proceedings of the Royal Society, London, vol. A240, pp. 493-515, 1957.10.1098/rspa.1957.0191
  37. 37. L. Saluto and M. S. Mongiovi, Inhomogeneous vortex tangles in counterflow superfluid turbulence: flow in convergent channels, Communications in Applied and Industrial Mathematics, vol. 7, no. 2, pp. 130-149, 2016.10.1515/caim-2016-0010
  38. 38. I. Carlomagno, V. Cimmelli, and D. Jou, Computational analysis of heat rectification in compositiongraded systems: From macro-to-nanoscale, Physica B: Condensed Matter, vol. 481, pp. 244-251, 2016.10.1016/j.physb.2015.11.012
Language: English
Page range: 141 - 148
Submitted on: Jan 12, 2017
Accepted on: Nov 12, 2018
Published on: Dec 5, 2018
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Lidia Saluto, David Jou, Maria Stella Mongiovì, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.