Have a personal or library account? Click to login
On the linear stability of some finite difference schemes for nonlinear reaction-diffusion models of chemical reaction networks Cover

On the linear stability of some finite difference schemes for nonlinear reaction-diffusion models of chemical reaction networks

Open Access
|Dec 2018

References

  1. 1. R. Fisher, The wave of advance of advantageous genes, Ann Hum Genet, vol. 7, pp. 355{369, 1937.10.1111/j.1469-1809.1937.tb02153.x
  2. 2. A. D. Bazykin, Hypothetical mechanism of speciation, Evolution, vol. 23, pp. 685{687, 1969.10.1111/j.1558-5646.1969.tb03550.x28562864
  3. 3. B. Bradshaw-Hajek, Reaction-di usion equations for population genetics. PhD thesis, School of Math- ematics and Applied Statistics, University of Wollongong, 2004.
  4. 4. J. G. Skellam, Random dispersal in theoretical populations, Biometrika, vol. 38, pp. 196{218, 1951.10.1093/biomet/38.1-2.196
  5. 5. A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond., pp. 37{72, 1952.10.1098/rstb.1952.0012
  6. 6. A. Gierer and H. Meinhardt, A theory of biological pattern formation, kybernetik, vol. 12, pp. 30{39, 1972.10.1007/BF002892344663624
  7. 7. J. D. Murray, Mathematical Biology: I. An Introduction. Springer, 1989.10.1007/978-3-662-08539-4
  8. 8. J. D. Murray, Mathematical Biology: II. Spatial Models and Biomedical Applications. Springer, 2003.10.1007/b98869
  9. 9. J. J. Tyson and P. C. Fife, Target patterns in a realistic model of the belousov-zhabotinskii reaction, J. Chem. Phys., vol. 73, pp. 2224{2237, 1980.10.1063/1.440418
  10. 10. J. Sneyd, A. C. Charles, and M. J. Sanderson, A model for the propagation of intracellular calcium waves, Am. J. Physiol., vol. 266, pp. 293{302, 1994.10.1152/ajpcell.1994.266.1.C2938304425
  11. 11. J. Sneyd, B. T. R. Wetton, A. C. Charles, and M. J. Sanderson, Intracellular calcium waves mediated by diffusion of inositol triphosphate; a two dimensional model, Am. J. Physiol., vol. 268, pp. 1537-1545, 1995.10.1152/ajpcell.1995.268.6.C1537
  12. 12. S. Means, A. J. Smith, J. Shepherd, J. Shadid, J. Fowler, R. J. H. Wojcikiewicz, T. Mazel, G. D. Smith, and B. S. Wilson, Reaction-diffusion modelling of calcium dynamics with realistic er geometry, Biophysical Journal, vol. 91, pp. 537{557, 2006.10.1529/biophysj.105.075036148311516617072
  13. 13. X.-S. Yang, Computational modelling of nonlinear calcium waves, Appl. Math. Model., vol. 30, pp. 200{208, 2006.10.1016/j.apm.2005.03.013
  14. 14. M. A. Colman, C. Pinali, A. W. Trafford, H. Zhang, and A. Kitmitto, A computational model of spatio- temporal cardiac intracellular calcium handling with realistic structure and spatial flux distribution from sarcoplasmic reticulum and t-tubule reconstructions, PLOS Comput. Biol., vol. 13, 2017.10.1371/journal.pcbi.1005714
  15. 15. E. Meron, Pattern formation in excitable media, Physics Reports, vol. 218, no. 1, pp. 1 { 66, 1992.10.1016/0370-1573(92)90098-K
  16. 16. J. M. Hyman, The method of lines solution of partial differential equations, Tech. Rep. C00-3077-139, New York University, October 1976.10.2172/7311903
  17. 17. L. Brugnano, F. Mazzia, and D. Trigiante, Fifty years of stiffness, in Recent Advances in Computational and Applied Mathematics (T. E. Simos, ed.), ch. 1, pp. 1{21, Springer Netherlands, 2011.10.1007/978-90-481-9981-5_1
  18. 18. K. Radhakrishnan, Comparison of numerical techniques for integration of stiff ordinary differential equations arising in combustion chemistry, Tech. Rep. NASA-TP-2372, NASA, October 1984.
  19. 19. J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Adv. Comput. Math., vol. 6, pp. 207{226, 1996.10.1007/BF02127704
  20. 20. R. Glowinski, Finite element methods for incompressible viscous ow, Handbook of Numerical Anal- ysis, vol. 9, pp. 3{1176, 2003.10.1016/S1570-8659(03)09003-3
  21. 21. A. Madzvamuse and A. H. Chung, Fully implicit time-stepping schemes and non-linear solvers for systems of reaction diffusion equations, Appl. Math. Comput., vol. 244, pp. 361{374, 2014.10.1016/j.amc.2014.07.004
  22. 22. A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff pdes, SIAM J. Sci. Comput., vol. 26, no. 4, pp. 1214{1233, 2005.10.1137/S1064827502410633
  23. 23. U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., vol. 32, no. 3, pp. 797{823, 1995.10.1137/0732037
  24. 24. H.Wang, C.-W. Shu, and Q. Zhang, Stability and error estimates of local discontinuous galerkin meth- ods with implicit-explicit time-marching for advection-diffusion problems, SIAM J. Numer. Anal., vol. 53, pp. 206{227, 2015.10.1137/140956750
  25. 25. A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Comput. Phys., vol. 214, pp. 239-263, 2006.10.1016/j.jcp.2005.09.012
  26. 26. Q. Nie, Y.-T. Wan, Frederic Y. M.and Zhang, and X.-F. Liu, Compact integration factor methods in high spatial dimensions, J. Comput. Phys., vol. 227, pp. 5238{5255, 2008.10.1016/j.jcp.2008.01.050
  27. 27. Q. Nie, Y.-T. Zhang, and Z. Rui, Efficient semi-implicit schemes for stiff systems, J. Comput. Phys., vol. 214, pp. 521{537, 2006.10.1016/j.jcp.2005.09.030
  28. 28. J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods. Springer, 1995.10.1007/978-1-4899-7278-1
  29. 29. D. Ho, Stability and convergence of finite difference methods for systems of nonlinear reaction- diffusion equations, SIAM J. Numer. Anal., vol. 15, no. 6, pp. 1161{1177, 1978.10.1137/0715077
  30. 30. A. Araújo, S. Barbeiro, and P. Serranho, Stability of finite difference schemes for complex diffusion processes, SIAM J. Numer. Anal., vol. 50, no. 3, pp. 1284-1296, 2012.10.1137/110825789
  31. 31. A. Araújo, S. Barbeiro, and P. Serranho, Stability of finite difference schemes for nonlinear complex reaction-diffusion processes, IMA J. Numer. Anal., vol. 35, pp. 1381-1401, 2015.10.1093/imanum/dru037
  32. 32. N. Li, J. Steiner, and S. Tang, Convergence and stability analysis of an explicit finite difference method for 2-dimensional reaction-diffusion equations, J. Austral. Math. Soc., vol. 36, pp. 234{241, 1994.10.1017/S0334270000010377
  33. 33. C. Hirsch, Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization. John Wiley & Sons, 1988.
  34. 34. R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, 2013.
  35. 35. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems. John Wiley & Sons, 1967.
  36. 36. D. Serre, Matrices; Theory and Applications. Springer, 2010.10.1007/978-1-4419-7683-3_3
  37. 37. A. J. Laub, Matrix Analysis for Scientists and Engineers. SIAM, 2005.
  38. 38. B. Dasgupta, Applied Mathematical Methods. Dorling Kindersley (India) Pvt. Ltd., 2006.
  39. 39. D. Siegel, Chemical reaction networks as compartmental systems, Presented at the 21st International Symposium on Mathematical Theory of Networks and Systems, July 7-11, 2014. Groningen, The Netherlands.
  40. 40. G. Giorgi and C. Zuccotti, An overview on d-stable matrices. Universita Di Pavia, DEM Working Paper Series, Feb. 2015.
  41. 41. G. Nicolis and I. Prigogine, Self-organization in nonequilibrium systems : from dissipative structures to order through fluctuations / g. nicolis, i. prigogine, 01 1977.
  42. 42. I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. ii, The Journal of Chemical Physics, vol. 48, no. 4, pp. 1695{1700, 1968.10.1063/1.1668896
  43. 43. M. Marek and I. Schreiber, Chaotic behaviour of deterministic dissipative systems. Cambridge University Press, 1991.10.1017/CBO9780511608162
Language: English
Page range: 121 - 140
Submitted on: Oct 3, 2017
|
Accepted on: Oct 8, 2018
|
Published on: Dec 5, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Nathan Muyinda, Bernard De Baets, Shodhan Rao, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.