Have a personal or library account? Click to login
High-Order Variational Time Integrators for Particle Dynamics Cover

High-Order Variational Time Integrators for Particle Dynamics

By: E. Miglio,  N. Parolini,  M. Penati and  R. Porcù  
Open Access
|Dec 2018

References

  1. 1. J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., vol. 10, pp. 357{514, 2001.10.1017/S096249290100006X
  2. 2. C. Kane, J. E. Marsden, M. Ortiz, and M. West, Variational integrators and the Newmark algorithmfor conservative and dissipative mechanical systems, Internat. J. Numer. Methods Engrg., vol. 49, no. 10, pp. 1295{1325, 2000.10.1002/1097-0207(20001210)49:10<;1295::AID-NME993>3.0.CO;2-W
  3. 3. E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, vol. 31 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2010.
  4. 4. J. Hall and M. Leok, Spectral variational integrators, Numer. Math., vol. 130, no. 4, pp. 681{740, 2015.10.1007/s00211-014-0679-0
  5. 5. S. Ober-Blobaum and N. Saake, Construction and analysis of higher order Galerkin variational integrators, Adv. Comput. Math., vol. 41, no. 6, pp. 955{986, 2015.10.1007/s10444-014-9394-8
  6. 6. S. Ober-Blobaum, Galerkin variational integrators and modi_ed symplectic Runge-Kutta methods, IMA J. Numer. Anal., vol. 37, no. 1, pp. 375{406, 2017.10.1093/imanum/drv062
  7. 7. R. Porc_u, Metodi numerici e tecniche di programmazione per l'accelerazione di un modello di dinamicadi particelle non interagenti, Master's thesis, Politecnico di Milano, 2013.
  8. 8. L. D. Landau and E. M. Lifshitz, Mechanics. Course of Theoretical Physics, Vol. 1. Translatedfrom the Russian by J. B. Bell, Pergamon Press, Oxford-London-New York-Paris; Addison-WesleyPublishing Co., Inc., Reading, Mass., 1960.
  9. 9. V. I. Arnol'd, Mathematical methods of classical mechanics, vol. 60 of Graduate Texts in Mathematics. Springer-Verlag, New York, second ed., 1989. Translated from the Russian by K. Vogtmann and A. Weinstein.10.1007/978-1-4757-2063-1
  10. 10. G. Auchmuty, Optimal coercivity inequalities in W1;p(), Proc. Roy. Soc. Edinburgh Sect. A, vol. 135, no. 5, pp. 915{933, 2005.10.1017/S0308210500004182
  11. 11. C. Bernardi, C. Canuto, and Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximationof the Stokes problem, SIAM J. Numer. Anal., vol. 25, no. 6, pp. 1237{1271, 1988.10.1137/0725070
  12. 12. R. A. Nicolaides, Existence, uniqueness and approximation for generalized saddle point problems, SIAM J. Numer. Anal., vol. 19, no. 2, pp. 349{357, 1982.10.1137/0719021
  13. 13. C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., vol. 38, no. 157, pp. 67{86, 1982.10.1090/S0025-5718-1982-0637287-3
  14. 14. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. A. Zang, Spectral methods. Scientific Computation, Berlin: Springer-Verlag, 2006. Fundamentals in single domains.10.1007/978-3-540-30726-6
  15. 15. C. Phillips and R. E. Brown, The effect of helicopter configuration on the fluid dynamics of brouwnout, in 34th European Rotorcraft Forum, 16-19 September 2008.
  16. 16. E. Miglio, N. Parolini, M. Penati, and R. Porcu, GPU parallelization of brownout simulations with a non-interacting particles dynamic model, MOX Report 29/2016, Politecnico di Milano, 2016.
Language: English
Page range: 34 - 49
Submitted on: Oct 14, 2016
Accepted on: Oct 4, 2018
Published on: Dec 19, 2018
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 E. Miglio, N. Parolini, M. Penati, R. Porcù, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.