Have a personal or library account? Click to login
On an optimal control strategy in a kinetic social dynamics model Cover

On an optimal control strategy in a kinetic social dynamics model

Open Access
|Dec 2018

References

  1. 1. K. D. Bailey, Sociology and the new systems theory: Toward a theoretical synthesis. Suny Press, 1994.
  2. 2. N. Bellomo, F. Colasuonno, D. Knopoff, and J. Soler, From a systems theory of sociology to modeling the onset and evolution of criminality, Networks & Heterogeneous Media, vol. 10, no. 3, 2015.10.3934/nhm.2015.10.421
  3. 3. N. Bellomo, D. Knopoff, and J. Soler, On the diffcult interplay between life, “complexity", and mathematical sciences, Mathematical Models and Methods in Applied Sciences, vol. 23, no. 10, pp. 1861-1913, 2013.10.1142/S021820251350053X
  4. 4. M. Dolfin and M. Lachowicz, Modeling opinion dynamics: how the network enhances consensus, Networks & Heterogeneous Media, vol. 10, no. 4, pp. 421-441, 2015.10.3934/nhm.2015.10.877
  5. 5. D. Knopoff, On a mathematical theory of complex systems on networks with application to opinion formation, Mathematical Models and Methods in Applied Sciences, vol. 24, no. 2, pp. 405-426, 2014.10.1142/S0218202513400137
  6. 6. A. Bellouquid, E. De Angelis, and D. Knopoff, From the modeling of the immune hallmarks of cancer to a black swan in Biology, Mathematical Models and Methods in Applied Sciences, vol. 23, no. 5, pp. 949-978, 2013.10.1142/S0218202512500650
  7. 7. D. A. Knopoff and J. M. Sánchez Sansó, A kinetic model for horizontal transfer and bacterial antibiotic resistance, International Journal of Biomathematics, vol. 10, no. 04, p. 1750051, 2017.10.1142/S1793524517500516
  8. 8. M. Delitala, P. Pucci, and M. Salvatori, From methods of the mathematical kinetic theory for active particles to modeling virus mutations, Mathematical Models and Methods in Applied Sciences, vol. 21, no. supp01, pp. 843-870, 2011.10.1142/S0218202511005398
  9. 9. M. Dolfin, L. Leonida, and N. Outada, Modeling human behavior in economics and social science, Physics of Life Reviews, 2017.10.1016/j.plrev.2017.06.02628711344
  10. 10. M. L. Bertotti and M. Delitala, From discrete kinetic and stochastic game theory to modelling complex systems in applied sciences, Mathematical Models and Methods in Applied Sciences, vol. 14, no. 7, pp. 1061-1084, 2004.10.1142/S0218202504003544
  11. 11. M. L. Bertotti and M. Delitala, Conservation laws and asymptotic behavior of a model of social dynamics, Nonlinear Analysis: Real World Applications, vol. 9, no. 1, pp. 183-196, 2008.10.1016/j.nonrwa.2006.09.012
  12. 12. D. Knopoff, On the modeling of migration phenomena on small networks, Mathematical Models and Methods in Applied Sciences, vol. 23, no. 3, pp. 541-563, 2013.10.1142/S0218202512500558
  13. 13. N. Bellomo, M. A. Herrero, and A. Tosin, On the dynamics of social conflicts: looking for the black swan, Kinetic and related models, vol. 6, no. 3, pp. 459-479, 2013.10.3934/krm.2013.6.459
  14. 14. N. N. Taleb, The black swan: The impact of the highly improbable. Random house, 2007.
  15. 15. M. Dolfin, D. Knopoff, L. Leonida, and D. M. A. Patti, Escaping the trap of "blocking": a kinetic model linking economic development and political competition, Kinetic and Related Models, vol. in press, 2016.10.3934/krm.2017016
  16. 16. B. Düring, D. Matthes, and G. Toscani, Kinetic equations modelling wealth redistribution: a comparison of approaches, Physical Review E, vol. 78, no. 5, p. 056103, 2008.10.1103/PhysRevE.78.056103
  17. 17. G. Ajmone Marsan, N. Bellomo, and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Mathematical Models and Methods in Applied Sciences, vol. 26, no. 6, pp. 1051-1093, 2016.10.1142/S0218202516500251
  18. 18. L. Pareschi and G. Toscani, Interacting multiagent systems: kinetic equations and Monte Carlo meth- ods. OUP Oxford, 2013.
  19. 19. D. Cass and K. Shell, The Hamiltonian approach to dynamic economics. Academic Press, 2014.
  20. 20. W. Stadler, Multicriteria Optimization in Engineering and in the Sciences, vol. 37. Springer Science & Business Media, 2013.
  21. 21. G. Albi, M. Herty, and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Communications in Mathematical Sciences, vol. 13, no. 6, pp. 1407-1429, 2015.10.4310/CMS.2015.v13.n6.a3
  22. 22. A. Barrea and M. E. Hernández, Optimal control of a delayed breast cancer stem cells nonlinear model, Optimal Control Applications and Methods, vol. 37, no. 2, pp. 248-258, 2016.10.1002/oca.2164
  23. 23. M. Gerdts, Optimal control of ODEs and DAEs. Walter de Gruyter, 2012.10.1515/9783110249996
  24. 24. S. Lenhart and J. T. Workman, Optimal control applied to biological models. Crc Press, 2007.10.1201/9781420011418
  25. 25. UNU-IHDP., Inclusive wealth report 2012: measuring progress toward sustainability. Cambridge University Press, 2012.
  26. 26. M. Jarvis, G.-M. Lange, K. Hamilton, D. Desai, B. Fraumeni, B. Edens, S. Ferreira, H. Li, L. Chakraborti, W. Kingsmill, et al., The changing wealth of nations: measuring sustainable de- velopment in the new millennium. 2011.
Language: English
Page range: 22 - 33
Submitted on: Sep 29, 2016
Accepted on: Apr 10, 2018
Published on: Dec 19, 2018
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Damián A. Knopoff, Germán A. Torres, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.