Have a personal or library account? Click to login
An Asymptotic Preserving Scheme for Kinetic Models for Chemotaxis Phenomena Cover

An Asymptotic Preserving Scheme for Kinetic Models for Chemotaxis Phenomena

Open Access
|Dec 2018

References

  1. 1. C.S. Patlak, Random walk with persistence and external bias, Bull. Math. Biol. Biophys., vol. 15, pp. 311-338, 1953.10.1007/BF02476407
  2. 2. E.F. Keller and L.A. Segel, Traveling band of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., vol. 30, pp. 235-248, 1971.10.1016/0022-5193(71)90051-8
  3. 3. T. Hillen and K.J. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., vol. 58 pp. 183-217, 2009.10.1007/s00285-008-0201-318626644
  4. 4. D. Horstmann, From 1970 until present: The Keller{Segel model in chemotaxis and its consequences. I, Jahresberichte Deutsch. Math.-Verein, vol. 105, pp. 103-165, 2003.
  5. 5. N. Bellomo, A. Bellouquid, Y. Tao, and M. Winkler, Toward a mathematical theory of Keller-Segelmodels of pattern formation in biological tissues, Math. Models Methods Appl. Sci. , vol. 25, no. 09, pp. 1663-1763, 2015.10.1142/S021820251550044X
  6. 6. H. G. Othmer, S. R. Dunbar, and W. Alt, Models of dispersal in biological systems, J. Math. Biol., vol. 26, pp. 263-298, 1988.10.1007/BF002773923411255
  7. 7. H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., vol. 57, no. 4, pp. 1044-1081, 1997.10.1137/S0036139995288976
  8. 8. N. Bellomo, A. Bellouquid, J. Nieto, and J. Soler, Multicellular growing systems: Hyperbolic limitstowards macroscopic description, Math. Models Methods Appl. Sci., vol. 17, pp. 1675-1693, 2007.10.1142/S0218202507002431
  9. 9. N. Bellomo, A. Bellouquid, N. Nieto, and J. Soler, Modeling chemotaxis from L2 closure moments inkinetic theory of active particles, Discrete Contin. Dyn. Syst., Ser. B, vol. 18, pp. 847-863, 2013.10.3934/dcdsb.2013.18.847
  10. 10. A. Bellouquid and E. De Angelis, From Kinetic Models of Multicellular Growing Systems to MacroscopicBiological Tissue Models, Nonlinear Analysis: Real World Applications, vol. 12, pp. 1111{1122, 2011.10.1016/j.nonrwa.2010.09.005
  11. 11. F. Filbet, P. Lauren_cot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., vol. 50, pp. 189-207, 2005.10.1007/s00285-004-0286-215480673
  12. 12. T. Hillen, On the L2-moment closure of transport equation: The Cattaneo approximation, DiscreteContin. Dyn. Syst., Ser. B, vol. 4, pp. 961-982, 2004.10.3934/dcdsb.2004.4.961
  13. 13. S. Jin, E_cient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., vol. 21, no. 2, pp. 441-454, 1999.10.1137/S1064827598334599
  14. 14. N. Crouseilles, P. Degond, and M. Lemou, A hybrid kinetic/uid model for solving the gas dynamicsBoltzmann-BGK equation, J. Comput. Phys., vol. 199, pp. 776-808, 2004.10.1016/j.jcp.2004.03.007
  15. 15. P. Degond, S. Jin, and L. Mieussens, A smooth transition model between kinetic and hydrodynamicequations, J. Comput. Phys., vol.209 pp. 665-694, 2005.10.1016/j.jcp.2005.03.025
  16. 16. L. Pareschi and R.E. Caisch, An implicit Monte Carlo method for rarefied gas dynamics. I. Thespace homogeneous case, J. Comput. Phys., vol. 154, pp. 90-116, 1999.10.1006/jcph.1999.6301
  17. 17. L. Pareschi and G. Russo, Asymptotic preserving Monte Carlo methods for the Boltzmann equation, Transp. Theory Stat. Phys., vol. 29, pp. 415-430, 2000.10.1080/00411450008205882
  18. 18. L. Pareschi and G. Russo, Time relaxed Monte Carlo methods for the Boltzmann equation, SIAM J. Sci. Comput., vol. 23 pp. 1253-1273, 2001.10.1137/S1064827500375916
  19. 19. J. A. Carrillo and B. Yan, An Asymptotic Preserving Scheme for the Diffusive Limit of Kinetic systemsfor Chemotaxis, Multiscale Model. Simul., vol. 11, no. 1, pp. 336-361, 2013.10.1137/110851687
  20. 20. J.-M. Coron and B. Perthame, Numerical passage from kinetic to uid equations, SIAM J. Numer. Anal., vol. 28, pp. 26-42, 1991.10.1137/0728002
  21. 21. S. Jin and L. Pareschi, Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes, J. Comput. Phys., vol. 161, pp. 312-330, 2000.10.1006/jcph.2000.6506
  22. 22. S. Jin, L. Pareschi, and G. Toscani, Uniformly accurate diffusive relaxation schemes for multiscaletransport equations, SIAM J. Numer. Anal., vol. 38, no. 3, pp. 913-936, 2001.10.1137/S0036142998347978
  23. 23. A. Klar and C. Schmeiser, Numerical passage from radiative heat transfer to nonlinear diffusionmodels, Math. Models Methods Appl. Sci., vol. 11, pp. 749-767, 2001.10.1142/S0218202501001082
  24. 24. F. Filbet and S. Jin, A class of asymptotic preserving schemes for kinetic equations and relatedproblems with stiff sources, J. Comput. Phys., vol.229, 7625-7648, 2010.10.1016/j.jcp.2010.06.017
  25. 25. F. Filbet and S. Jin, An asymptotic preserving scheme for the ES-BGK model for the Boltzmann equation, J. Sci. Comp., vol. 46, pp. 204-224, 2011.10.1007/s10915-010-9394-x
  26. 26. S. Jin and B. Yan, A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation, J. Comput. Phys., vol. 230, pp. 6420-6437, 2011.10.1016/j.jcp.2011.04.002
  27. 27. B. Yan and J. Shi, A successive penalty-based asymptotic-preserving scheme for kinetic equations, SIAM J. Numer. Anal., vol.35, no. 1, pp. 150-172, 2013.10.1137/110857982
  28. 28. T.P. Liu and S.H. Yu, Boltzmann equation: micro-macro decompositions and positivity of shock profiles, Communications in Mathematical Physics, vol. 246, no. 1, pp. 133-179, 2004.10.1007/s00220-003-1030-2
  29. 29. M. Bennoune, M. Lemou, and L. Mieussens, Uniformly stable numerical schemes for the Boltzmannequation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys., vol. 227, pp. 3781-3803, 2008.10.1016/j.jcp.2007.11.032
  30. 30. M. Bennoune, M. Lemou, and L. Mieussens, An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit, Continuum Mechanics and Thermodynamics, vol. 21,pp. 401-421, 2009.10.1007/s00161-009-0116-2
  31. 31. J. A. Carrillo, T. Goudon, P. Lafitte, and F. Vecil, Numerical schemes of diffusion asymptotics and moment closure for kinetic equations, J. Sci. Comput., vol. 35, pp. 113-149, 2008.10.1007/s10915-007-9181-5
  32. 32. A. Crestetto, N. Crouseilles, and M. Lemou, Kinetic/uid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles, Kinet. Relat. Models, vol. 5, no. 4, pp. 487-816, 2012.10.3934/krm.2012.5.787
  33. 33. N. Crouseilles and M. Lemou, An asymptotic preserving scheme based on a micro-macro decompositionfor collisional Vlasov equations: diffusion and high-field scaling limits, Kinet. Relat. Models, vol. 4, pp. 441{477, 2011.10.3934/krm.2011.4.441
  34. 34. S. Jin and Y. Shi, A micro-macro decomposition based asymptotic-preserving scheme for the multispeciesBoltzmann equation, SIAM J. Sci. Comput., vol.31, pp. 4580-4606, 2010.10.1137/090756077
  35. 35. M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulationfor linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., vol. 31, pp. 334-368, 2008.10.1137/07069479X
  36. 36. M. Lemou and F. M_ehats, Micro-macro schemes for kinetic equations including boundary layers, SIAM J. Sci. Comput., vol. 34, pp. 734-760, 2012.10.1137/120865513
  37. 37. T. Hillen and H.G. Othmer, The diffusion limit of transport equations derived from velocity jumpprocesses, SIAM J. Appl. Math., vol. 61, pp. 751-775, 2000.10.1137/S0036139999358167
  38. 38. H.G. Othmer and T. Hillen, The diffusion limit of transport equations II: chemotaxis equations, SIAM J. Appl. Math., vol.62, pp. 1222-1250, 2002.10.1137/S0036139900382772
  39. 39. F. A. Chalub, P. Markowich, B. Perthame, and C. Schmeiser, Kinetic Models for Chemotaxis and their Drift-Diffusion Limits, Monatsh. Math., vol. 142, pp. 123-141, 2004.10.1007/978-3-7091-0609-9_10
  40. 40. N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results, RIMS Kokyuroku Bessatsu, vol. 15, pp. 125-146, 2005.
  41. 41. N. Bellomo, A. Bellouquid, J. Nieto, and J. Soler, On the multi scale modeling of vehicular tra_c: from kinetic to hydrodynamics, Discrete Contin. Dyn. Syst., Ser. B, vol.19, pp. 1869-1888, 2014.10.3934/dcdsb.2014.19.1869
Language: English
Page range: 61 - 75
Submitted on: Sep 30, 2016
Accepted on: Jan 23, 2018
Published on: Dec 19, 2018
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Abdelghani Bellouquid, Jacques Tagoudjeu, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.