References
- Afifi M.M.I., Ismail A.M., Kamel S.M., Essa T.A., 2017. Humic substances: a powerful tool for controlling Fusarium wilt disease and improving the growth of cucumber plants. Journal of Plant Pathology, 99(1): 61–67.
- Aljasim A.H., 2019. Effect of humic acid spray on morphological and yield traits of cucumber (Cucumis sativus L.) var. Babylon under Al-Hasaka conditions. Syrian Journal of Agricultural Research, 6(4): 24–34.
- Amerian M., Palangi, A., Gohari G., Ntatsi G., 2024. Humic acid and grafting as sustainable agronomic practices for increased growth and secondary metabolism in cucumber subjected to salt stress. Scientific Reports, 14(1): 15883, doi: 10.1038/s41598-024-66677-8.
- Anjum S.A., Wang L., Farooq M., Xue L., Ali S., 2011. Fulvic acid application improves the maize performance under well-watered and drought conditions. Journal of Agronomy and Crop Science, 197(6): 409–417, doi: 10.1111/j.1439-037x.2011.00483.x.
- AOAC, 2005. Official Methods of Analysis. Association of Official Analytical Chemists, 18th ed.; AOAC INTERNATIONAL: Gaithersburg, MA, USA.
- Appiah E.A., Virág C.I., Kutasy E., 2024. Biostimulant induce growth, chlorophyll content and fresh herbage yield of alfalfa (Medicago sativa L.) and variegated alfalfa (Medicago × varia Martyn) plant. Acta Agraria Debreceniensis, 1: 19–25, doi: 10.34101/ACTAAGRAR/1/13552.
- Arancon N.Q., Edwards C.A., Lee S., Byrne R., 2006. Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology, 46: 65–69, doi: 10.1016/j.ejsobi.2006.06.004.
- Billard V., Etienne P. Jannin L., Garnica M., Cruz F., Garcia-Mina J.-M. Yvin J.-C., Ourry A., 2014. Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). Journal of Plant Growth Regulation, 33: 305–316, doi: 10.1007/s00344-013-9372-2.
- Bityutskii N.P., Yakkonen K.L., Petrova A.I., Lukina K.A., Shavarda A.L., 2018. Silicon ameliorates iron deficiency of cucumber in a pH-dependent manner. Journal of Plant Physiology, 231: 364–373, doi: 10.1016/j.jplph.2018.10.017.
- Calvo P., Nelson L., Kloepper J.W., 2014. Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2): 3–41, doi: 10.1007/s11104-014-2131-8.
- Canellasa L.P., Olivaresa F.L., Aguiara N.O., Jonesb D.L., Nebbiosoc A., Mazzeic P., Piccolo A., 2015. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196: 15–27, doi: 10.1016/j.scienta.2015.09.013.
- Capstaff N. M., Morrison F., Cheema J., Brett P., Hill L., Muñoz-García J. C., Khimyak Y. Z., Domoney C., Miller A. J., 2020. Fulvic acid increases forage legume growth inducing preferential up-regulation of nodulation and signalling-related genes Journal of Experimental Botany, 71(18): 5689–5704.
- Cheema M.A., Wahid M.A., Sattar A., Rasul F., Saleem M.F., 2012. Influence of different levels of potassium on growth, yield and quality of canola (Brassica napus L.) cultivars. Pakistan Journal of Agricultural Sciences, 49(2): 163–168.
- Cristofano F., El-Nakhel C., Rouphael Y., 2021. Biostimulant substances for sustainable agriculture: origin, operating mechanisms and effects on cucurbits, leafy greens, and nightshade vegetables species. Biomolecules, 11(8): 1103, doi: 10.3390/biom11081103.
- du Jardin P., 2015. Plant biostimulants: Definition, concept, main categories and regulation Scientia Horticulturae, 196: 3–14, doi: 10.1016/j.scienta.2015.09.021.
- Ekinci M., Esringü A., Dursun A., Yildirim E., Turan M., Karaman M., Arjumend T., 2015. Growth, yield, and calcium and boron uptake of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.) as affected by calcium and boron humate application in greenhouse conditions. Turkish Journal of Agriculture and Forestry, 39: 613–632, doi: 10.3906/tar-1406-59.
- El Moukhtari, A., Lamsaadi, N., Farissi, M., 2024. Biostimulatory effects of ascorbic acid in improving plant growth, photosynthesis-related parameters and mitigating oxidative damage in alfalfa (Medicago sativa L.) under salt stress condition. Biologia, 79: 2375–2385, doi: 10.1007/s11756-024-01704-7.
- El-Gazzar T.M., Tartoura E.A., Farid S.E., El-Kolly A.H., 2020. Effect of different sources of organic manures and different levels of humic and fulvic acid on growth, flowering, yield and its components of watermelon plants. Journal of Plant Production, 11(11): 1135–1143, doi: 10.21608/jpp.2020.130953.
- El-Hadidi E.M., Taha A.A., Soliman M.A., 2010. Role of humic substances, seaweeds and mineral fertilizers in improvement of cucumber production. Journal of Soil Sciences and Agricultural Engineering, Mansoura University, 1(10): 985–997.
- Ferrara G., Pacifico A., Simone P., Ferrara E., 2008. Preliminary study on the effects of foliar applications of humic acids on ‘Italia’ table grape. Journal International des Sciences de la Vigne et du Vin, 42: 79–87.
- Gao M., Tang F., Wang K., Zeng F., Wang Y., Tian G., 2022. The heterogeneity of humic/fulvic acids derived from composts explains the differences in accelerating soil Cd-hyperaccumulation by Sedum alfredii. Journal of Environmental Management, 301: 113837, doi: 10.1016/j.jenvman.2021.113837.
- Gitau M.M., Farkas A., Balla B., Ördög V., Futó Z. Maróti G., 2021. Strain-specific biostimulant effects of Chlorella and Chlamydomonas green microalgae on Medicago truncatula. Plants, 10: 1060, doi: 10.3390/plants10061.
- Godlewska A., Ciepiela G. A., 2018. Assessment of the effect of various biostimulants on Medicago × varia T. Martyn yielding and content of selected organic components. Applied Ecology and Environmental Research, 16(5): 5571–5581.
- Haghighi M., Kafi M., Fang P., 2012. Photosynthetic activity and N metabolism of lettuce as affected by humic acid. International Journal of Vegetable Science, 18(2): 182–189, doi: 10.1080/19315260.2011.605826.
- Hamail A., Hamada M., Tartoura E., Abd El-Hady M., 2014. Effect of N-forms and bio-stimulants on productivity of cucumber: 2-flowering characters, yield and its components. Journal of Plant Production, 5(4): 573–583, doi: 10.21608/jpp.2014.53723.
- Harizanova A., Koleva-Valkova L., Vassilev A., 2022. Effects of the protein hydrolysate pretreatment on cucumber plants exposed to chilling stress. Acta Agrobotanica, 75: 756, doi: 10.5586/aa.756.
- Hassan S.M., Ashour M., Sakai N., Zhang L., Hassanien H.A., Gaber A., Ammarr G.A.G., 2021. Impact of seaweed liquid extract biostimulant on growth, yield, and chemical composition of cucumber (Cucumis sativus). Agriculture, 11: 320, doi: 10.3390/agriculture11040320.
- Jannin L., Arkoun M., Ourry A., Laîné P., Goux D., Garnica M., Fuentes M., Francisco S.S., Baigorri R., Cruz F., Houdusse F., Garcia-Mina J.-M., Yvin J.-C., Etienne P., 2012. Microarray analysis of humic acid effects on Brassica napus growth: Involvement of N, C and S metabolisms. Plant and Soil, 359(1-2): 297–319, doi: 10.1007/s11104-012-1191-x.
- Khalil H.M., Ali L.K.M., Mahmoud A.A., 2011. Impact of applied humic and fulvic acids on the soil physic-chemical properties and cucumber productivity under protected cultivation conditions. Journal of Soil Sciences and Agricultural Engineering, 2(2): 183–201, doi: 10.21608/jssae.2011.55419.
- Li F., Zhang S., Chai L., Guo Z., Li P., Han Y., Wang Y., 2024. Enhanced maize yield and nitrogen efficiency with low molecular weight fulvic acid: insights into chlorophyll a/b ratio and nitrogen metabolising enzyme activity. Plant Soil and Environment, 70(10): 632–643, doi: 10.17221/320/2024-PSE.
- Liu C.J., Lyu C.Y., Ai X.Z., Bi H.G., 2022. Effects of fulvic acid on photosynthetic characteristics, yield and quality of cucumber under drought stress. The Journal of Applied Ecology, 33(5): 1300–1310, doi: 10.13287/j.1001-9332.202205.014.
- Marinova D., Stoyanova S., Petrova I., 2023. Effect of foliar application of biostimulants on forage yield in alfalfa (Medicago sativa L.). Turkish Journal of Field Crops, 28(1): 7–14, doi: 10.17557/tjfc.1192602.
- Matysiak K., Kaczmarek S., Kierzek R., Kardasz P., 2010. Effect of seaweeds extracts and humic and fulvic acids on the Germination and early growth of winter oilseed rape (Brassica napus L.) Journal of Research and Applications in Agricultural Engineering, 55(4): 28–32.
- Matysiak K., Kaczmarek S., Krawczyk R., 2011. Influence of seaweed extracts and mixture of humic and fulvic acids on germination and growth of Zea mays L. Acta Scientiarum Polonorum, Agricultura, 10(1): 33–45.
- Mora V., Bacaicoa E., Zamarreño A.M., Aguirre E., Garnica M., Fuentes M., García-Mina J.-M., 2010. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. Journal of Plant Physiology, 167(8): 633–642, doi: 10.1016/j.jplph.2009.11.018.
- Moradi P., Pasari B., Fayyaz F., 2017. The effects of fulvic acid application on seed and oil yield of safflower cultivars. Journal of Central European Agriculture, 18(3): 584–597, doi: 10.5513/JCEA01/18.3.1933.
- Najafi M., Arouiee H., Aminifard M.H., 2022. Effects of humic acid and amino acid on some growth traits on super daminus cucumber (Cucumis sativus L.) under drought stress. Journal of Horticultural Science, 35(4): 521–533.
- Pavadharini P., Sakthivel N., Ramah K., Sivasakthivelan P., Senthil V.P., Kabilan M., Vasumathi V., 2025. Application of fulvic acid in agriculture: An overview. Plant Science Today, doi: 10.14719/pst.8487.
- Pizzeghello D., Nicolini G., Nardi S., 2002. Hormon-like activities of humic substances in different forest ecosystems. New Phytologist, 155(3): 393–402, doi: 10.1046/j.1469-8137.2002.00475.x.
- PN-EN 12145, 2001. Fruit and Vegetable Juices–Determination of Total Dry Matter–Gravimetric Method with Loss of Mass on Drying. Polish Committee for Standardization: Warsaw, Poland.
- Rauthan B.S., Schnitzer M., 1981. Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant and Soil, 63: 491–495.
- Rodegher G., Ambrosini S., Pandolfini T., Zanzoni S., Zamboni A., Varanini Z., 2024. The simultaneous application of fulvic acid and protein hydrolysate biostimulants enhances cucumber responses to Fe deficiency. Current Plant Biology, 40, 100411, doi: 10.1016/j.cpb.2024.100411.
- Saadatian M., Saleem K., Abdullah H., 2025. Seed Priming with vegetal protein hydrolysate enhances germination and early seedling growth in Cucumis sativus L. International Journal of Horticultural Science and Technology, 12(2): 357–364, doi: 10.22059/ijhst.2024.358649.637.
- Sarir M.S., Sharif M., Zeb A., Akhlaq M., 2005. Influence of different levels of humic acid application by various methods on the yield and yield components of maize. Sarhad Journal of Agriculture, 21(1): 75–81.
- Song H., Zhu W., Guo Z., Song T., Wang J., Gao C., Zhang H., Shen R., 2025. The impact of fulvic acid on the growth physiology, yield, and quality of tomatoes under drought conditions. Agronomy, 15(7): 1528, doi: 10.3390/agronomy15071528.
- Sosnowski J., Jankowski K., Truba M., Malinowska E., 2019a. Effect of Ecklonia maxima extract on photosynthesis activity and chlorophyll content of Medicago × varia Martyn leaves, Chilean Journal of Agricultural Research, 79(2): 257–265, doi: 10.4067/S0718-58392019000200257.
- Sosnowski J., Malinowska E., Jankowski K.. Król J., Redzik P., 2019b. An estimation of the effects of synthetic auxin and cytokinin and the time of their application on some morphological and physiological characteristics of Medicago × varia T. Martyn. Saudi Journal of Biological Sciences, 26(1): 66–73, doi: 10.1016/j.sjbs.2016.12.023.
- Sosnowski J., Toczyska E., Truba M., 2019c. Morphological effects of Stymjod foliar application on Medicago × varia T. Martyn. Journal of Ecological Engineering, 20(8): 184–191, doi: 10.12911/22998993/111151.
- Sosnowski J., Truba M., 2021. Photosynthetic activity and chlorophyll pigment concentration in Medicago × varia T. Martyn leaves treated with the Tytanit growth regulator. Saudi Journal of Biological Sciences, 28(7): 4039–4045, doi: 10.1016/j.sjbs.2021.03.073.
- Suh H.Y., Yoo K.S., Suh S.G., 2014. Effect of foliar application of fulvic acid on plant growth and fruit quality of tomato (Lycopersicon esculentum L.). Horticulture, Environment and Biotechnology, 55(6): 455–461, doi: 10.1007/s13580-014-0004-y.
- Trejo Valencia R., Sánchez Acosta L., Fortis Hernández M., Preciado Rangel P., Gallegos Robles M., Antonio Cruz R., Vázquez Vázquez C., 2018. Effect of Seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (Cucumis sativus L.) fruit. Agronomy, 8: 264, doi: 10.3390/agronomy8110264.
- Trevisan S., Francioso O., Quaggiotti S., Nardi S., 2010. Humic substances biological activity at the plant-soil interface. From environmental aspects to molecular factors. Plant Signaling and Behavior, 5(6): 635–643, doi: 10.4161/psb.5.6.11211.
- Verlinden G., Coussens T., De Vliegher A., Baert G., Haesaert G., 2010. Effect of humic substances on nutrient uptake by herbage and on production and nutritive value of herbage from sown grass pastures. Grass and Forage Science, 65(1): 133–144, doi: 10.1111/j.1365-2494.2009.00726.x.
- Wang Y., Liu T., Li X.-K., Ren T., Cong R.-H., Lu J.-W., 2015. Nutrient deficiency limits population development, yield formation, and nutrient uptake of direct sown winter oilseed rape. Journal of Integrative Agriculture, 14(4): 670–680, doi: 10.1016/s2095-3119(14)60798-x.
- WIPO ST 10/C PL 396362. Patent: Development of the composition and production technology of a dietary supplement based on a protein-xanthophyll concentrate from alfalfa under the name “Medisat”. (Opracowanie składu i technologii produkcji suplementu diety na bazie koncentratu białkowo-ksantofilowego z lucerny pod nazwą “Medisat”).
- Yaquby A.M., Rabbani B., Saddad S., 2024. Effect of humic acid and ascorbic acid on seed germination and growth of cucumber (Cucumis sativus L.) under salinity stress. Basrah Journal of Agricultural Sciences, 37(1): 105–118, doi: 10.37077/25200860.2024.37.1.09.
- Yassin A.M., Juma Al-Zubaidi N.A., 2025. Effect of fertilizing with agricultural sulfur and foliar feeding with humic and fulvic acids on some qualitative and quantitative characteristics in cucumber Cucumis sativus L. under protected cultivation conditions. IOP Conference, Series: Earth and Environmental Science, 1487(1), 012049, doi: 10.1088/1755-1315/1487/1/012049.
- Yu B., Wang L., Cui D., Gao W., Xue X., Nie P., 2023. Effects of fulvic acid on growth and nitrogen utilization efficiency in M9T337 seedlings. Plants, 12, 3937, doi: 10.3390/plants12233937.
- Zhang P., Zhang H., Wu G., Chen X., Gruda N., Li X., Dong J., Duan Z., 2021. Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse. Frontiers in Plant Science, 12: 736613, doi: 10.3389/fpls.2021.736613.
- Zhu S.S., Mi J.Z., Zhao B.P., Wu, J.Y., Wang Y., Liu J.H., 2022. Effect of fulvic acid on photosynthesis and antioxidant enzyme activities of Avena sativa under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 42: 1902–1909, doi: 10.7606/j.issn.1000-4025.2022.11.1902.
- Zhu Y.-X., Xu X.-B., Hu Y.-H., Han W.-H., Yin J.-L., Li H.-L., Gong H.-J., 2015. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Reports, 34: 1629–1646, doi: 10.1007/s00299-015-1814-9.